Skip to main content

Advertisement

Log in

Aging of the Liver: What This Means for Patients with HIV

  • Co-infections and Comorbidity (S Naggie, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

As the HIV population continues to live longer as a result of antiretroviral therapy, liver-related mortality has become one of the leading causes of non-AIDS related death in this patient population. The liver possesses a remarkable regenerative capacity but undergoes complex biological changes in response to aging and inflammation that result in decreased cellular regeneration and a tipping of the scales towards fibrogenesis. Patients with HIV infection have serological evidence of ongoing inflammation, with elevations in some biomarkers persisting despite adequate virologic control. In addition, HIV-co-infected patients have markers of advanced age on liver biopsy and increased prevalence of fibrosis as compared to an age-matched HCV mono-infected cohort. In this review, we will discuss the biology of aging, age-related changes in the liver, and the relevant mechanisms by which HIV causes inflammation in the context of accelerated aging, fibrosis of the liver, and other viral co-infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Walensky RP, Paltiel AD, Losina E, Mercincavage LM, Schackman BR, Sax PE, et al. The survival benefits of AIDS treatment in the United States. J Infect Dis. 2006;194(1):11–9. doi:10.1086/505147.

    Article  PubMed  Google Scholar 

  2. Palella Jr FJ, Baker RK, Moorman AC, Chmiel JS, Wood KC, Brooks JT, et al. Mortality in the highly active antiretroviral therapy era: changing causes of death and disease in the HIV outpatient study. J Acquir Immune Defic Syndr. 2006;43(1):27–34. doi:10.1097/01.qai.0000233310.90484.16.

    Article  CAS  PubMed  Google Scholar 

  3. Smith CJ, Ryom L, Weber R, Morlat P, Pradier C, Reiss P, et al. Trends in underlying causes of death in people with HIV from 1999 to 2011 (D:A:D): a multicohort collaboration. Lancet (London, England). 2014;384(9939):241–8. doi:10.1016/s0140-6736(14)60604-8.

    Article  Google Scholar 

  4. HIV Surveillance Report 2014. In: HIV surveillance report. CDC division of HIV/AIDS Prevention. 2015. http://www.cdc.gov/hiv/library/reports/surveillance/. Accessed 7/15/2016 26.

  5. May MT, Ingle SM, Costagliola D, Justice AC, de Wolf F, Cavassini M, et al. Cohort profile: Antiretroviral Therapy Cohort Collaboration (ART-CC). Int J Epidemiol. 2014;43(3):691–702. doi:10.1093/ije/dyt010.

    Article  PubMed  Google Scholar 

  6. Deeks SG. HIV infection, inflammation, immunosenescence, and aging. Annu Rev Med. 2011;62:141–55. doi:10.1146/annurev-med-042909-093756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Effros RB, Fletcher CV, Gebo K, Halter JB, Hazzard WR, Horne FM, et al. Aging and infectious diseases: workshop on HIV infection and aging: what is known and future research directions. Clin Infect Dis: Off Publ Infect Dis Soc Am. 2008;47(4):542–53. doi:10.1086/590150.

    Article  Google Scholar 

  8. Guaraldi G, Orlando G, Zona S, Menozzi M, Carli F, Garlassi E, et al. Premature age-related comorbidities among HIV-infected persons compared with the general population. Clin Infect Dis: Off Publ Infect Dis Soc Am. 2011;53(11):1120–6. doi:10.1093/cid/cir627.

    Article  Google Scholar 

  9. Smith C, Sabin CA, Lundgren JD, Thiebaut R, Weber R, Law M, et al. Factors associated with specific causes of death amongst HIV-positive individuals in the D:A:D Study. AIDS (London, England). 2010;24(10):1537–48. doi:10.1097/QAD.0b013e32833a0918.

    Google Scholar 

  10. Macias J, Berenguer J, Japon MA, Giron JA, Rivero A, Lopez-Cortes LF, et al. Fast fibrosis progression between repeated liver biopsies in patients coinfected with human immunodeficiency virus/hepatitis C virus. Hepatology (Baltimore, Md). 2009;50(4):1056–63. doi:10.1002/hep.23136.

    Article  CAS  Google Scholar 

  11. Tovo CV, Becker SC, Almeida PR, Galperim B, Chaves S. Progression of liver fibrosis in monoinfected patients by hepatitis C virus and coinfected by HCV and human immunodeficiency virus. Arq Gastroenterol. 2013;50(1):19–22.

    Article  PubMed  Google Scholar 

  12. Benhamou Y, Di Martino V, Bochet M, Colombet G, Thibault V, Liou A, et al. Factors affecting liver fibrosis in human immunodeficiency virus-and hepatitis C virus-coinfected patients: impact of protease inhibitor therapy. Hepatology (Baltimore, Md). 2001;34(2):283–7. doi:10.1053/jhep.2001.26517.

    Article  CAS  Google Scholar 

  13. Kim N, editor. Poorly controlled HIV infection is a risk factor for liver fibrosis in CNICS Cohort. Congress on Retroviruses and Opportunistic Infection; 2016. 2/25/2016; Boston.

  14. Kirkwood TB. Understanding the odd science of aging. Cell. 2005;120(4):437–47. doi:10.1016/j.cell.2005.01.027.

    Article  CAS  PubMed  Google Scholar 

  15. Bhatia-Dey N, Kanherkar RR, Stair SE, Makarev EO, Csoka AB. Cellular senescence as the causal nexus of aging. Front Genet. 2016;7:13. doi:10.3389/fgene.2016.00013.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sahin E, Colla S, Liesa M, Moslehi J, Muller FL, Guo M, et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature. 2011;470(7334):359–65. doi:10.1038/nature09787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu C, Lin JD. PGC-1 coactivators in the control of energy metabolism. Acta Biochim Biophys Sin. 2011;43(4):248–57. doi:10.1093/abbs/gmr007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005;1(6):361–70. doi:10.1016/j.cmet.2005.05.004.

    Article  PubMed  CAS  Google Scholar 

  19. Childs BG, Durik M, Baker DJ, van Deursen JM. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med. 2015;21(12):1424–35. doi:10.1038/nm.4000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621.

    Article  CAS  PubMed  Google Scholar 

  21. Potten CS, Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development (Cambridge, England). 1990;110(4):1001–20.

    CAS  Google Scholar 

  22. van Deursen JM. The role of senescent cells in ageing. Nature. 2014;509(7501):439–46. doi:10.1038/nature13193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Baker DJ, Perez-Terzic C, Jin F, Pitel KS, Niederlander NJ, Jeganathan K, et al. Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency. Nat Cell Biol. 2008;10(7):825–36. doi:10.1038/ncb1744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Baker DJ, Weaver RL, van Deursen JM. p21 both attenuates and drives senescence and aging in BubR1 progeroid mice. Cell Rep. 2013;3(4):1164–74. doi:10.1016/j.celrep.2013.03.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sharpless NE, Sherr CJ. Forging a signature of in vivo senescence. Nat Rev Cancer. 2015;15(7):397–408. doi:10.1038/nrc3960.

    Article  CAS  PubMed  Google Scholar 

  26. Green MR. Senescence: not just for tumor suppression. Cell. 2008;134(4):562–4. doi:10.1016/j.cell.2008.08.003.

    Article  CAS  PubMed  Google Scholar 

  27. Kuilman T, Peeper DS. Senescence-messaging secretome: SMS-ing cellular stress. Nat Rev Cancer. 2009;9(2):81–94. doi:10.1038/nrc2560.

    Article  CAS  PubMed  Google Scholar 

  28. Coppe JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118. doi:10.1146/annurev-pathol-121808-102144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell. 2008;133(6):1006–18. doi:10.1016/j.cell.2008.03.038.

    Article  CAS  PubMed  Google Scholar 

  30. Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ, et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell. 2008;133(6):1019–31. doi:10.1016/j.cell.2008.03.039.

    Article  CAS  PubMed  Google Scholar 

  31. Maier JA, Voulalas P, Roeder D, Maciag T. Extension of the life-span of human endothelial cells by an interleukin-1 alpha antisense oligomer. Science (New York, NY). 1990;249(4976):1570–4.

    Article  CAS  Google Scholar 

  32. Ipp H, Zemlin AE, Erasmus RT, Glashoff RH. Role of inflammation in HIV-1 disease progression and prognosis. Crit Rev Clin Lab Sci. 2014;51(2):98–111. doi:10.3109/10408363.2013.865702.

    Article  CAS  PubMed  Google Scholar 

  33. Aberg JA. Aging, inflammation, and HIV infection. Top Antiviral Med. 2012;20(3):101–5.

    Google Scholar 

  34. Abraham AG, Althoff KN, Jing Y, Estrella MM, Kitahata MM, Wester CW, et al. End-stage renal disease among HIV-infected adults in North America. Clin Infect Dis: Off Publ Infect Dis Soc Am. 2015;60(6):941–9. doi:10.1093/cid/ciu919.

    Article  Google Scholar 

  35. Althoff KN, McGinnis KA, Wyatt CM, Freiberg MS, Gilbert C, Oursler KK, et al. Comparison of risk and age at diagnosis of myocardial infarction, end-stage renal disease, and non-AIDS-defining cancer in HIV-infected versus uninfected adults. Clin Infect Dis: Off Publ Infect Dis Soc Am. 2015;60(4):627–38. doi:10.1093/cid/ciu869.

    Article  Google Scholar 

  36. Vance DE, Mugavero M, Willig J, Raper JL, Saag MS. Aging with HIV: a cross-sectional study of comorbidity prevalence and clinical characteristics across decades of life. J Assoc Nurses AIDS Care: JANAC. 2011;22(1):17–25. doi:10.1016/j.jana.2010.04.002.

    Article  PubMed  Google Scholar 

  37. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69 Suppl 1:S4–9. doi:10.1093/gerona/glu057.

    Article  PubMed  Google Scholar 

  38. Varadhan R, Yao W, Matteini A, Beamer BA, Xue QL, Yang H, et al. Simple biologically informed inflammatory index of two serum cytokines predicts 10 year all-cause mortality in older adults. J Gerontol A Biol Sci Med Sci. 2014;69(2):165–73. doi:10.1093/gerona/glt023.

    Article  CAS  PubMed  Google Scholar 

  39. Ottinger ME, Monaghan SF, Gravenstein S, Cioffi WG, Ayala A, Heffernan DS. The geriatric cytokine response to trauma: time to consider a new threshold. Surg Infect. 2014;15(6):800–5. doi:10.1089/sur.2013.235.

    Article  Google Scholar 

  40. Desai S, Landay A. Early immune senescence in HIV disease. Curr HIV/AIDS Rep. 2010;7(1):4–10. doi:10.1007/s11904-009-0038-4.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dubrow R, Silverberg MJ, Park LS, Crothers K, Justice AC. HIV infection, aging, and immune function: implications for cancer risk and prevention. Curr Opin Oncol. 2012;24(5):506–16. doi:10.1097/CCO.0b013e328355e131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Appay V, Fastenackels S, Katlama C, Ait-Mohand H, Schneider L, Guihot A, et al. Old age and anti-cytomegalovirus immunity are associated with altered T-cell reconstitution in HIV-1-infected patients. AIDS (London, England). 2011;25(15):1813–22. doi:10.1097/QAD.0b013e32834640e6.

    Article  CAS  Google Scholar 

  43. Assimakopoulos SF, Dimitropoulou D, Marangos M, Gogos CA. Intestinal barrier dysfunction in HIV infection: pathophysiology, clinical implications and potential therapies. Infection. 2014;42(6):951–9. doi:10.1007/s15010-014-0666-5.

    Article  CAS  PubMed  Google Scholar 

  44. Mehandru S, Poles MA, Tenner-Racz K, Horowitz A, Hurley A, Hogan C, et al. Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. J Exp Med. 2004;200(6):761–70. doi:10.1084/jem.20041196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim CJ, McKinnon LR, Kovacs C, Kandel G, Huibner S, Chege D, et al. Mucosal Th17 cell function is altered during HIV infection and is an independent predictor of systemic immune activation. J Immunol (Baltimore, Md: 1950). 2013;191(5):2164–73. doi:10.4049/jimmunol.1300829.

    Article  CAS  Google Scholar 

  46. Kim CJ, Nazli A, Rojas OL, Chege D, Alidina Z, Huibner S, et al. A role for mucosal IL-22 production and Th22 cells in HIV-associated mucosal immunopathogenesis. Mucosal Immunol. 2012;5(6):670–80. doi:10.1038/mi.2012.72.

    Article  CAS  PubMed  Google Scholar 

  47. Dandekar S, George MD, Baumler AJ. Th17 cells, HIV and the gut mucosal barrier. Curr Opin HIV AIDS. 2010;5(2):173–8. doi:10.1097/COH.0b013e328335eda3.

    Article  PubMed  Google Scholar 

  48. Canani RB, Cirillo P, Mallardo G, Buccigrossi V, Secondo A, Annunziato L, et al. Effects of HIV-1 Tat protein on ion secretion and on cell proliferation in human intestinal epithelial cells. Gastroenterology. 2003;124(2):368–76. doi:10.1053/gast.2003.50056.

    Article  CAS  PubMed  Google Scholar 

  49. Nazli A, Chan O, Dobson-Belaire WN, Ouellet M, Tremblay MJ, Gray-Owen SD, et al. Exposure to HIV-1 directly impairs mucosal epithelial barrier integrity allowing microbial translocation. PLoS Pathog. 2010;6(4):e1000852. doi:10.1371/journal.ppat.1000852.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Clayton F, Kotler DP, Kuwada SK, Morgan T, Stepan C, Kuang J, et al. Gp120-induced Bob/GPR15 activation: a possible cause of human immunodeficiency virus enteropathy. Am J Pathol. 2001;159(5):1933–9. doi:10.1016/s0002-9440(10)63040-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hattab S, Guihot A, Guiguet M, Fourati S, Carcelain G, Caby F, et al. Comparative impact of antiretroviral drugs on markers of inflammation and immune activation during the first two years of effective therapy for HIV-1 infection: an observational study. BMC Infect Dis. 2014;14:122. doi:10.1186/1471-2334-14-122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Wada NI, Jacobson LP, Margolick JB, Breen EC, Macatangay B, Penugonda S, et al. The effect of HAART-induced HIV suppression on circulating markers of inflammation and immune activation. AIDS (London, England). 2015;29(4):463–71. doi:10.1097/qad.0000000000000545.

    Article  CAS  Google Scholar 

  53. Gorenec L, Zidovec Lepej S, Grgic I, Planinic A, Iscic Bes J, Vince A, et al. The comparison of Th1, Th2, Th9, Th17 and Th22 cytokine profiles in acute and chronic HIV-1 infection. Microb Pathog. 2016;97:125–30. doi:10.1016/j.micpath.2016.06.008.

    Article  CAS  PubMed  Google Scholar 

  54. Hattab S, Guiguet M, Carcelain G, Fourati S, Guihot A, Autran B, et al. Soluble biomarkers of immune activation and inflammation in HIV infection: impact of 2 years of effective first-line combination antiretroviral therapy. HIV Med. 2015;16(9):553–62. doi:10.1111/hiv.12257.

    Article  CAS  PubMed  Google Scholar 

  55. Van Gorp H, Delputte PL, Nauwynck HJ. Scavenger receptor CD163, a Jack-of-all-trades and potential target for cell-directed therapy. Mol Immunol. 2010;47(7–8):1650–60. doi:10.1016/j.molimm.2010.02.008.

    Article  PubMed  CAS  Google Scholar 

  56. Fabriek BO, van Bruggen R, Deng DM, Ligtenberg AJ, Nazmi K, Schornagel K, et al. The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria. Blood. 2009;113(4):887–92. doi:10.1182/blood-2008-07-167064.

    Article  CAS  PubMed  Google Scholar 

  57. Hintz KA, Rassias AJ, Wardwell K, Moss ML, Morganelli PM, Pioli PA, et al. Endotoxin induces rapid metalloproteinase-mediated shedding followed by up-regulation of the monocyte hemoglobin scavenger receptor CD163. J Leukoc Biol. 2002;72(4):711–7.

    CAS  PubMed  Google Scholar 

  58. Hunt PW. HIV and aging: emerging research issues. Curr Opin HIV AIDS. 2014;9(4):302–8. doi:10.1097/coh.0000000000000072.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Knudsen TB, Ertner G, Petersen J, Moller HJ, Moestrup SK, Eugen-Olsen J, et al. Plasma CD163 independently predicts all-cause mortality from HIV-1 infection. J Infect Dis. 2016. doi:10.1093/infdis/jiw263.

    Google Scholar 

  60. Wynne HA, Cope LH, Mutch E, Rawlins MD, Woodhouse KW, James OF. The effect of age upon liver volume and apparent liver blood flow in healthy man. Hepatology (Baltimore, Md). 1989;9(2):297–301.

    Article  CAS  Google Scholar 

  61. Le Couteur DG, McLean AJ. The aging liver. Drug clearance and an oxygen diffusion barrier hypothesis. Clin Pharmacokinet. 1998;34(5):359–73. doi:10.2165/00003088-199834050-00003.

    Article  PubMed  Google Scholar 

  62. Iber FL, Murphy PA, Connor ES. Age-related changes in the gastrointestinal system. Effects on drug therapy. Drugs Aging. 1994;5(1):34–48.

    Article  CAS  PubMed  Google Scholar 

  63. Zeeh J, Platt D. The aging liver: structural and functional changes and their consequences for drug treatment in old age. Gerontology. 2002;48(3):121–7.

    Article  CAS  PubMed  Google Scholar 

  64. Marchesini G, Bua V, Brunori A, Bianchi G, Pisi P, Fabbri A, et al. Galactose elimination capacity and liver volume in aging man. Hepatology (Baltimore, Md). 1988;8(5):1079–83.

    Article  CAS  Google Scholar 

  65. Wakabayashi H, Nishiyama Y, Ushiyama T, Maeba T, Maeta H. Evaluation of the effect of age on functioning hepatocyte mass and liver blood flow using liver scintigraphy in preoperative estimations for surgical patients: comparison with CT volumetry. J Surg Res. 2002;106(2):246–53.

    Article  PubMed  Google Scholar 

  66. Zoli M, Magalotti D, Bianchi G, Gueli C, Orlandini C, Grimaldi M, et al. Total and functional hepatic blood flow decrease in parallel with ageing. Age Ageing. 1999;28(1):29–33.

    Article  CAS  PubMed  Google Scholar 

  67. Vollmar B, Pradarutti S, Richter S, Menger MD. In vivo quantification of ageing changes in the rat liver from early juvenile to senescent life. Liver. 2002;22(4):330–41.

    Article  PubMed  Google Scholar 

  68. Sotaniemi EA, Arranto AJ, Pelkonen O, Pasanen M. Age and cytochrome P450-linked drug metabolism in humans: an analysis of 226 subjects with equal histopathologic conditions. Clin Pharmacol Ther. 1997;61(3):331–9. doi:10.1016/s0009-9236(97)90166-1.

    Article  CAS  PubMed  Google Scholar 

  69. Dong MH, Bettencourt R, Barrett-Connor E, Loomba R. Alanine aminotransferase decreases with age: the Rancho Bernardo Study. PLoS One. 2010;5(12):e14254. doi:10.1371/journal.pone.0014254.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Mahrouf-Yorgov M, Collin de l’Hortet A, Cosson C, Slama A, Abdoun E, Guidotti JE, et al. Increased susceptibility to liver fibrosis with age is correlated with an altered inflammatory response. Rejuvenation Res. 2011;14(4):353–63. doi:10.1089/rej.2010.1146.

    Article  CAS  PubMed  Google Scholar 

  71. Collins BH, Holzknecht ZE, Lynn KA, Sempowski GD, Smith CC, Liu S, et al. Association of age-dependent liver injury and fibrosis with immune cell populations. Liver Int: Off J Int Assoc Study Liver. 2013;33(8):1175–86. doi:10.1111/liv.12202.

    Article  CAS  Google Scholar 

  72. Hong IH, Lewis K, Iakova P, Jin J, Sullivan E, Jawanmardi N, et al. Age-associated change of C/EBP family proteins causes severe liver injury and acceleration of liver proliferation after CCl4 treatments. J Biol Chem. 2014;289(2):1106–18. doi:10.1074/jbc.M113.526780.

    Article  CAS  PubMed  Google Scholar 

  73. Poynard T, Ratziu V, Charlotte F, Goodman Z, McHutchison J, Albrecht J. Rates and risk factors of liver fibrosis progression in patients with chronic hepatitis c. J Hepatol. 2001;34(5):730–9.

    Article  CAS  PubMed  Google Scholar 

  74. Noureddin M, Yates KP, Vaughn IA, Neuschwander-Tetri BA, Sanyal AJ, McCullough A, et al. Clinical and histological determinants of nonalcoholic steatohepatitis and advanced fibrosis in elderly patients. Hepatology (Baltimore, Md). 2013;58(5):1644–54. doi:10.1002/hep.26465.

    Article  CAS  Google Scholar 

  75. Forrest EH, Evans CD, Stewart S, Phillips M, Oo YH, McAvoy NC, et al. Analysis of factors predictive of mortality in alcoholic hepatitis and derivation and validation of the Glasgow alcoholic hepatitis score. Gut. 2005;54(8):1174–9. doi:10.1136/gut.2004.050781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hernandez MD, Sherman KE. HIV/hepatitis C coinfection natural history and disease progression. Curr Opin HIV AIDS. 2011;6(6):478–82. doi:10.1097/COH.0b013e32834bd365.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Guaraldi G, Lonardo A, Ballestri S, Zona S, Stentarelli C, Orlando G, et al. Human immunodeficiency virus is the major determinant of steatosis and hepatitis C virus of insulin resistance in virus-associated fatty liver disease. Arch Med Res. 2011;42(8):690–7. doi:10.1016/j.arcmed.2011.12.009.

    Article  CAS  PubMed  Google Scholar 

  78. Verna E, editor. NAFLD and NASH in HIV infection. Boston: CROI; 2016. 2/24/2016.

    Google Scholar 

  79. Beier JI, McClain CJ. Mechanisms and cell signaling in alcoholic liver disease. Biol Chem. 2010;391(11):1249–64. doi:10.1515/bc.2010.137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang K. Molecular mechanisms of liver injury: apoptosis or necrosis. Exp Toxicol Pathol: Off J Ges Toxikol Pathol. 2014;66(8):351–6. doi:10.1016/j.etp.2014.04.004.

    Article  CAS  Google Scholar 

  81. Szabo G. Gut-liver axis in alcoholic liver disease. Gastroenterology. 2015;148(1):30–6. doi:10.1053/j.gastro.2014.10.042.

    Article  CAS  PubMed  Google Scholar 

  82. Greuter T, Shah VH. Hepatic sinusoids in liver injury, inflammation, and fibrosis: new pathophysiological insights. J Gastroenterol. 2016. doi:10.1007/s00535-016-1190-4.

    PubMed  Google Scholar 

  83. Enomoto N, Ikejima K, Bradford BU, Rivera CA, Kono H, Goto M, et al. Role of Kupffer cells and gut-derived endotoxins in alcoholic liver injury. J Gastroenterol Hepatol. 2000;15(Suppl):D20–5.

    Article  CAS  PubMed  Google Scholar 

  84. Sacchi P, Cima S, Corbella M, Comolli G, Chiesa A, Baldanti F, et al. Liver fibrosis, microbial translocation and immune activation markers in HIV and HCV infections and in HIV/HCV co-infection. Dig Liver Dis: Off J Ital Soc Gastroenterol Ital Assoc Study Liver. 2015;47(3):218–25. doi:10.1016/j.dld.2014.11.012.

    Article  CAS  Google Scholar 

  85. Page EE, Nelson M, Kelleher P. HIV and hepatitis C coinfection: pathogenesis and microbial translocation. Curr Opin HIV AIDS. 2011;6(6):472–7. doi:10.1097/COH.0b013e32834bbc71.

    Article  PubMed  Google Scholar 

  86. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science (New York, NY). 1990;249(4975):1431–3.

    Article  CAS  Google Scholar 

  87. Dixon LJ, Barnes M, Tang H, Pritchard MT, Nagy LE. Kupffer cells in the liver. Compr Physiol. 2013;3(2):785–97. doi:10.1002/cphy.c120026.

    PubMed  PubMed Central  Google Scholar 

  88. Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 2008;88(1):125–72. doi:10.1152/physrev.00013.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Guo J, Friedman SL. Toll-like receptor 4 signaling in liver injury and hepatic fibrogenesis. Fibrogenesis Tissue Repair. 2010;3:21. doi:10.1186/1755-1536-3-21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Ahsan MH, Gill AF, Alvarez X, Lackner AA, Veazey RS. Kinetics of liver macrophages (Kupffer cells) in SIV-infected macaques. Virology. 2013;446(1–2):77–85. doi:10.1016/j.virol.2013.07.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Balagopal A, Ray SC, De Oca RM, Sutcliffe CG, Vivekanandan P, Higgins Y, et al. Kupffer cells are depleted with HIV immunodeficiency and partially recovered with antiretroviral immune reconstitution. AIDS (London, England). 2009;23(18):2397–404. doi:10.1097/QAD.0b013e3283324344.

    Article  CAS  Google Scholar 

  92. Le Couteur DG, Warren A, Cogger VC, Smedsrod B, Sorensen KK, De Cabo R, et al. Old age and the hepatic sinusoid. Anat Rec (Hoboken, NJ: 2007). 2008;291(6):672–83. doi:10.1002/ar.20661.

    Article  Google Scholar 

  93. Hilmer SN, Cogger VC, Le Couteur DG. Basal activity of Kupffer cells increases with old age. J Gerontol A Biol Sci Med Sci. 2007;62(9):973–8.

    Article  PubMed  Google Scholar 

  94. Housset C, Boucher O, Girard PM, Leibowitch J, Saimot AG, Brechot C, et al. Immunohistochemical evidence for human immunodeficiency virus-1 infection of liver Kupffer cells. Hum Pathol. 1990;21(4):404–8.

    Article  CAS  PubMed  Google Scholar 

  95. Hufert FT, Schmitz J, Schreiber M, Schmitz H, Racz P, von Laer DD. Human Kupffer cells infected with HIV-1 in vivo. J Acquir Immune Defic Syndr. 1993;6(7):772–7.

    CAS  PubMed  Google Scholar 

  96. Schmitt MP, Steffan AM, Gendrault JL, Jaeck D, Royer C, Schweitzer C, et al. Multiplication of human immunodeficiency virus in primary cultures of human Kupffer cells—possible role of liver macrophage infection in the physiopathology of AIDS. Res Virol. 1990;141(2):143–52.

    Article  CAS  PubMed  Google Scholar 

  97. Del Corno M, Cappon A, Donninelli G, Varano B, Marra F, Gessani S. HIV-1 gp120 signaling through TLR4 modulates innate immune activation in human macrophages and the biology of hepatic stellate cells. J Leukoc Biol. 2016. doi:10.1189/jlb.4A1215-534R.

    Google Scholar 

  98. Fabregat I, Moreno-Caceres J, Sanchez A, Dooley S, Dewidar B, Giannelli G, et al. TGF-beta signalling and liver disease. FEBS J. 2016;283(12):2219–32. doi:10.1111/febs.13665.

    Article  CAS  PubMed  Google Scholar 

  99. Patel P, Khan N, Rani M, Gupta D, Jameel S. The expression of HIV-1 Vpu in monocytes causes increased secretion of TGF-beta that activates profibrogenic genes in hepatic stellate cells. PLoS One. 2014;9(2):e88934. doi:10.1371/journal.pone.0088934.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Tuyama AC, Hong F, Saiman Y, Wang C, Ozkok D, Mosoian A, et al. Human immunodeficiency virus (HIV)-1 infects human hepatic stellate cells and promotes collagen I and monocyte chemoattractant protein-1 expression: implications for the pathogenesis of HIV/hepatitis C virus-induced liver fibrosis. Hepatology (Baltimore, Md). 2010;52(2):612–22. doi:10.1002/hep.23679.

    Article  CAS  Google Scholar 

  101. Angulo P, Keach JC, Batts KP, Lindor KD. Independent predictors of liver fibrosis in patients with nonalcoholic steatohepatitis. Hepatology (Baltimore, Md). 1999;30(6):1356–62. doi:10.1002/hep.510300604.

    Article  CAS  Google Scholar 

  102. Ratziu V, Giral P, Charlotte F, Bruckert E, Thibault V, Theodorou I, et al. Liver fibrosis in overweight patients. Gastroenterology. 2000;118(6):1117–23.

    Article  CAS  PubMed  Google Scholar 

  103. Hossain N, Afendy A, Stepanova M, Nader F, Srishord M, Rafiq N, et al. Independent predictors of fibrosis in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol: Off Clin Pract J Am Gastroenterol Assoc. 2009;7(11):1224–9. doi:10.1016/j.cgh.2009.06.007. 9.e1-2.

    Article  CAS  Google Scholar 

  104. Fierbinteanu-Braticevici C, Baicus C, Tribus L, Papacocea R. Predictive factors for nonalcoholic steatohepatitis (NASH) in patients with nonalcoholic fatty liver disease (NAFLD). J Gastrointest Liver Dis: JGLD. 2011;20(2):153–9.

    Google Scholar 

  105. Stepanova M, Rafiq N, Makhlouf H, Agrawal R, Kaur I, Younoszai Z, et al. Predictors of all-cause mortality and liver-related mortality in patients with non-alcoholic fatty liver disease (NAFLD). Dig Dis Sci. 2013;58(10):3017–23. doi:10.1007/s10620-013-2743-5.

    Article  CAS  PubMed  Google Scholar 

  106. Bhala N, Jouness RI, Bugianesi E. Epidemiology and natural history of patients with NAFLD. Curr Pharm Des. 2013;19(29):5169–76.

    Article  CAS  PubMed  Google Scholar 

  107. Pradat P, Voirin N, Tillmann HL, Chevallier M, Trepo C. Progression to cirrhosis in hepatitis C patients: an age-dependent process. Liver Int: Off J Int Assoc Study Liver. 2007;27(3):335–9. doi:10.1111/j.1478-3231.2006.01430.x.

    Article  Google Scholar 

  108. Kirk GD, Mehta SH, Astemborski J, Galai N, Washington J, Higgins Y, et al. HIV, age, and the severity of hepatitis C virus-related liver disease: a cohort study. Ann Intern Med. 2013;158(9):658–66. doi:10.7326/0003-4819-158-9-201305070-00604.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Butt AA, Yan P, Lo Re 3rd V, Rimland D, Goetz MB, Leaf D, et al. Liver fibrosis progression in hepatitis C virus infection after seroconversion. JAMA Intern Med. 2015;175(2):178–85. doi:10.1001/jamainternmed.2014.6502.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Rueger S, Bochud PY, Dufour JF, Mullhaupt B, Semela D, Heim MH, et al. Impact of common risk factors of fibrosis progression in chronic hepatitis C. Gut. 2015;64(10):1605–15. doi:10.1136/gutjnl-2014-306997.

    Article  CAS  PubMed  Google Scholar 

  111. Videla LA, Tapia G, Fernandez V. Influence of aging on Kupffer cell respiratory activity in relation to particle phagocytosis and oxidative stress parameters in mouse liver. Redox Rep: Commun Free Radic Res. 2001;6(3):155–9. doi:10.1179/135100001101536265.

    Article  CAS  Google Scholar 

  112. Friedman SL. Mechanisms of disease: mechanisms of hepatic fibrosis and therapeutic implications. Nat Clin Pract Gastroenterol Hepatol. 2004;1(2):98–105. doi:10.1038/ncpgasthep0055.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Austin W. Chan.

Ethics declarations

Conflict of Interest

Steve Choi is a member of Clinical Trial Events Adjudication Committee with Gilead Sciences.

Austin W. Chan and Yuval A. Patel declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Co-infections and Comorbidity

Austin W. Chan and Yuval A. Patel are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, A.W., Patel, Y.A. & Choi, S. Aging of the Liver: What This Means for Patients with HIV. Curr HIV/AIDS Rep 13, 309–317 (2016). https://doi.org/10.1007/s11904-016-0332-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-016-0332-x

Keywords

Navigation