Skip to main content

Advertisement

Log in

Antibody-Based Treatment of Acute Myeloid Leukemia

  • Acute Myeloid Leukemias (H Erba, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

While antibody-based therapies have emerged as clinically effective approaches for several hematologic and solid malignancies, they have not played a significant role to date in the treatment of acute myeloid leukemia (AML). More recently, improvements in antibody-drug conjugate technology, bispecific antibodies, as well as identification of novel AML antigens have re-invigorated enthusiasm for antibody-based therapies for AML. This review describes experiences with former and existing antibody-based therapies for AML, including unconjugated antibodies, antibody-drug conjugates (ADCs), radio-labelled antibodies, and immune-engaging antibodies, and discusses the promise and challenges associated with each.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christian BA, Lin TS. Antibody therapy for chronic lymphocytic leukemia. Semin Hematol. 2008;45(2):95–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Maloney DG et al. IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin's lymphoma. Blood. 1997;90(6):2188–95.

    CAS  PubMed  Google Scholar 

  3. Topp MS et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 2015;16(1):57–66.

    Article  CAS  PubMed  Google Scholar 

  4. Ehninger A et al. Distribution and levels of cell surface expression of CD33 and CD123 in acute myeloid leukemia. Blood Cancer J. 2014;4, e218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jurcic JG. What happened to anti-CD33 therapy for acute myeloid leukemia? Curr Hematol Malig Rep. 2012;7(1):65–73.

    Article  PubMed  Google Scholar 

  6. Weir EG, Borowitz MJ. Flow cytometry in the diagnosis of acute leukemia. Semin Hematol. 2001;38(2):124–38.

    Article  CAS  PubMed  Google Scholar 

  7. Ginaldi L et al. Levels of expression of CD19 and CD20 in chronic B cell leukaemias. J Clin Pathol. 1998;51(5):364–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Slamon DJ et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–82.

    Article  CAS  PubMed  Google Scholar 

  9. Jilani I et al. Differences in CD33 intensity between various myeloid neoplasms. Am J Clin Pathol. 2002;118(4):560–6.

    Article  PubMed  Google Scholar 

  10. Ginaldi L et al. Levels of expression of CD52 in normal and leukemic B and T cells: correlation with in vivo therapeutic responses to Campath-1H. Leuk Res. 1998;22(2):185–91.

    Article  CAS  PubMed  Google Scholar 

  11. Golay J et al. CD20 levels determine the in vitro susceptibility to rituximab and complement of B-cell chronic lymphocytic leukemia: further regulation by CD55 and CD59. Blood. 2001;98(12):3383–9.

    Article  CAS  PubMed  Google Scholar 

  12. Walter RB et al. Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood. 2012;119(26):6198–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Feldman E et al. Treatment of relapsed or refractory acute myeloid leukemia with humanized anti-CD33 monoclonal antibody HuM195. Leukemia. 2003;17(2):314–8.

    Article  CAS  PubMed  Google Scholar 

  14. Jurcic JG et al. Molecular remission induction with retinoic acid and anti-CD33 monoclonal antibody HuM195 in acute promyelocytic leukemia. Clin Cancer Res. 2000;6(2):372–80.

    CAS  PubMed  Google Scholar 

  15. Sekeres MA et al. Randomized phase IIb study of low-dose cytarabine and lintuzumab versus low-dose cytarabine and placebo in older adults with untreated acute myeloid leukemia. Haematologica. 2013;98(1):119–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Armand P. Immune checkpoint blockade in hematologic malignancies. Blood. 2015;125(22):3393–400.

    Article  CAS  PubMed  Google Scholar 

  17. Buyse M et al. Individual patient data meta-analysis of randomized trials evaluating IL-2 monotherapy as remission maintenance therapy in acute myeloid leukemia. Blood. 2011;117(26):7007–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takami A et al. Donor lymphocyte infusion for the treatment of relapsed acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation: a retrospective analysis by the Adult Acute Myeloid Leukemia Working Group of the Japan Society for Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant. 2014;20(11):1785–90.

    Article  PubMed  Google Scholar 

  19. Sievers EL, Linenberger M. Mylotarg: antibody-targeted chemotherapy comes of age. Curr Opin Oncol. 2001;13(6):522–7.

    Article  CAS  PubMed  Google Scholar 

  20. Sievers EL et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol. 2001;19(13):3244–54.

    CAS  PubMed  Google Scholar 

  21. Larson RA et al. Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer. 2005;104(7):1442–52.

    Article  CAS  PubMed  Google Scholar 

  22. Hills RK et al. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol. 2014;15(9):986–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Petersdorf SH et al. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood. 2013;121(24):4854–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kharfan-Dabaja MA et al. Gemtuzumab ozogamicin for treatment of newly diagnosed acute myeloid leukaemia: a systematic review and meta-analysis. Br J Haematol. 2013;163(3):315–25.

    Article  CAS  PubMed  Google Scholar 

  25. Rowe JM, Lowenberg B. Gemtuzumab ozogamicin in acute myeloid leukemia: a remarkable saga about an active drug. Blood. 2013;121(24):4838–41.

    Article  CAS  PubMed  Google Scholar 

  26. Castaigne S et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet. 2012;379(9825):1508–16.

    Article  CAS  PubMed  Google Scholar 

  27. Sievers EL et al. Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: a phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood. 1999;93(11):3678–84.

    CAS  PubMed  Google Scholar 

  28. Giles FJ et al. Mylotarg (gemtuzumab ozogamicin) therapy is associated with hepatic venoocclusive disease in patients who have not received stem cell transplantation. Cancer. 2001;92(2):406–13.

    Article  CAS  PubMed  Google Scholar 

  29. Wadleigh M et al. Prior gemtuzumab ozogamicin exposure significantly increases the risk of veno-occlusive disease in patients who undergo myeloablative allogeneic stem cell transplantation. Blood. 2003;102(5):1578–82.

    Article  CAS  PubMed  Google Scholar 

  30. Cohen AD et al. Gemtuzumab ozogamicin (Mylotarg) monotherapy for relapsed AML after hematopoietic stem cell transplant: efficacy and incidence of hepatic veno-occlusive disease. Bone Marrow Transplant. 2002;30(1):23–8.

    Article  CAS  PubMed  Google Scholar 

  31. McKoy JM et al. Gemtuzumab ozogamicin-associated sinusoidal obstructive syndrome (SOS): an overview from the research on adverse drug events and reports (RADAR) project. Leuk Res. 2007;31(5):599–604.

    Article  CAS  PubMed  Google Scholar 

  32. Rajvanshi P et al. Hepatic sinusoidal obstruction after gemtuzumab ozogamicin (Mylotarg) therapy. Blood. 2002;99(7):2310–4.

    Article  CAS  PubMed  Google Scholar 

  33. Amadori S et al. Gemtuzumab Ozogamicin Versus Best Supportive Care in Older Patients With Newly Diagnosed Acute Myeloid Leukemia Unsuitable for Intensive Chemotherapy: Results of the Randomized Phase III EORTC-GIMEMA AML-19 Trial. J Clin Oncol. 2016;34(9):972–9.

    Article  PubMed  Google Scholar 

  34. McDonald GB. Management of hepatic sinusoidal obstruction syndrome following treatment with gemtuzumab ozogamicin (Mylotarg). Clin Lymphoma. 2002;2 Suppl 1:S35–9.

    Article  PubMed  Google Scholar 

  35. Kantarjian HM et al., Inotuzumab Ozogamicin versus Standard Therapy for Acute Lymphoblastic Leukemia. N Engl J Med. 2016.

  36. Gorovits B, Krinos-Fiorotti C. Proposed mechanism of off-target toxicity for antibody-drug conjugates driven by mannose receptor uptake. Cancer Immunol Immunother. 2013;62(2):217–23.

    Article  CAS  PubMed  Google Scholar 

  37. Bross PF et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7(6):1490–6.

    CAS  PubMed  Google Scholar 

  38. Roboz GJ et al. Efficacy and safety of gemtuzumab ozogamicin in patients with poor-prognosis acute myeloid leukemia. Leuk Lymphoma. 2002;43(10):1951–5.

    Article  CAS  PubMed  Google Scholar 

  39. Hollander I, Kunz A, Hamann PR. Selection of reaction additives used in the preparation of monomeric antibody-calicheamicin conjugates. Bioconjug Chem. 2008;19(1):358–61.

    Article  CAS  PubMed  Google Scholar 

  40. Jedema I et al. Internalization and cell cycle-dependent killing of leukemic cells by Gemtuzumab Ozogamicin: rationale for efficacy in CD33-negative malignancies with endocytic capacity. Leukemia. 2004;18(2):316–25.

    Article  CAS  PubMed  Google Scholar 

  41. Cianfriglia M et al. Multidrug transporter proteins and cellular factors involved in free and mAb linked calicheamicin-gamma1 (gentuzumab ozogamicin, GO) resistance and in the selection of GO resistant variants of the HL60 AML cell line. Int J Oncol. 2010;36(6):1513–20.

    Article  CAS  PubMed  Google Scholar 

  42. Kung Sutherland MS et al. SGN-CD33A: a novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. Blood. 2013;122(8):1455–63.

    Article  PubMed  Google Scholar 

  43. Fathi AT et al. SGN-CD33A Plus Hypomethylating Agents: A Novel, Well-Tolerated Regimen with High Remission Rate in Frontline Unfit AML. in American Society for Hematology. 2015. Orland, Florida.

  44. Stein AS et al. A phase 1 Trial of SGN-CD33A As Monotherapy in Patients with CD33-Positive Acute Myeloid Leukemia (AML). Blood Cancer J. 2015;126(23):1.

    Google Scholar 

  45. Seattle Genetics, Inc. Vadastuximab Talirine (SGN-CD33A; 33A) COmbined with Azacitidine or Decitabine in Older Patients with Newly Diagnosed Acute Myeloid Leukemia (CASCADE). In ClinicalTrials.gov [Internet]. 2016. 20160804]; Available from: https://clinicaltrials.gov/ct2/show/NCT0278590.

  46. Hagenbeek A. Radioimmunotherapy for NHL: experience of 90Y-ibritumomab tiuxetan in clinical practice. Leuk Lymphoma. 2003;44 Suppl 4:S37–47.

    Article  CAS  PubMed  Google Scholar 

  47. Burke JM et al. Cytoreduction with iodine-131-anti-CD33 antibodies before bone marrow transplantation for advanced myeloid leukemias. Bone Marrow Transplant. 2003;32(6):549–56.

    Article  CAS  PubMed  Google Scholar 

  48. Ringhoffer M et al. 188Re or 90Y-labelled anti-CD66 antibody as part of a dose-reduced conditioning regimen for patients with acute leukaemia or myelodysplastic syndrome over the age of 55: results of a phase I-II study. Br J Haematol. 2005;130(4):604–13.

    Article  CAS  PubMed  Google Scholar 

  49. Pagel JM et al. 131I-anti-CD45 antibody plus busulfan and cyclophosphamide before allogeneic hematopoietic cell transplantation for treatment of acute myeloid leukemia in first remission. Blood. 2006;107(5):2184–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kantarjian HM et al. Blinatumomab treatment of older adults with relapsed/refractory B-precursor acute lymphoblastic leukemia: Results from 2 phase 2 studies. Cancer. 2016;122(14):2178–85.

    Article  CAS  PubMed  Google Scholar 

  51. Laszlo GS et al. Cellular determinants for preclinical activity of a novel CD33/CD3 bispecific T-cell engager (BiTE) antibody, AMG 330, against human AML. Blood. 2014;123(4):554–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Friedrich M et al. Preclinical characterization of AMG 330, a CD3/CD33-bispecific T-cell-engaging antibody with potential for treatment of acute myelogenous leukemia. Mol Cancer Ther. 2014;13(6):1549–57.

    Article  CAS  PubMed  Google Scholar 

  53. Teachey DT et al. Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood. 2013;121(26):5154–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kochenderfer JN et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood. 2012;119(12):2709–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Walter RB et al. Influence of CD33 expression levels and ITIM-dependent internalization on gemtuzumab ozogamicin-induced cytotoxicity. Blood. 2005;105(3):1295–302.

    Article  CAS  PubMed  Google Scholar 

  56. Linenberger ML. CD33-directed therapy with gemtuzumab ozogamicin in acute myeloid leukemia: progress in understanding cytotoxicity and potential mechanisms of drug resistance. Leukemia. 2005;19(2):176–82.

    Article  CAS  PubMed  Google Scholar 

  57. Chevallier P et al. Long-term disease-free survival after gemtuzumab, intermediate-dose cytarabine, and mitoxantrone in patients with CD33(+) primary resistant or relapsed acute myeloid leukemia. J Clin Oncol. 2008;26(32):5192–7.

    Article  CAS  PubMed  Google Scholar 

  58. Olombel G et al. The level of blast CD33 expression positively impacts the effect of gemtuzumab ozogamicin in patients with acute myeloid leukemia. Blood. 2016;127(17):2157–60.

    Article  CAS  PubMed  Google Scholar 

  59. Pollard JA et al. Correlation of CD33 expression level with disease characteristics and response to gemtuzumab ozogamicin containing chemotherapy in childhood AML. Blood. 2012;119(16):3705–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mortland L et al. Clinical significance of CD33 nonsynonymous single-nucleotide polymorphisms in pediatric patients with acute myeloid leukemia treated with gemtuzumab-ozogamicin-containing chemotherapy. Clin Cancer Res. 2013;19(6):1620–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Laszlo GS et al. Expression and functional characterization of CD33 transcript variants in human acute myeloid leukemia. Oncotarget. 2016.

  62. Guzman ML, Jordan CT. Considerations for targeting malignant stem cells in leukemia. Cancer Control. 2004;11(2):97–104.

    PubMed  Google Scholar 

  63. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7.

    Article  CAS  PubMed  Google Scholar 

  64. Terwijn M et al. Leukemic stem cell frequency: a strong biomarker for clinical outcome in acute myeloid leukemia. PLoS ONE. 2014;9(9), e107587.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Testa U et al. Interleukin-3 receptor in acute leukemia. Leukemia. 2004;18(2):219–26.

    Article  CAS  PubMed  Google Scholar 

  66. Testa U et al. Elevated expression of IL-3Ralpha in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity, and poor prognosis. Blood. 2002;100(8):2980–8.

    Article  CAS  PubMed  Google Scholar 

  67. Jordan CT et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia. 2000;14(10):1777–84.

    Article  CAS  PubMed  Google Scholar 

  68. Vergez F et al. High levels of CD34+CD38low/-CD123+ blasts are predictive of an adverse outcome in acute myeloid leukemia: a Groupe Ouest-Est des Leucemies Aigues et Maladies du Sang (GOELAMS) study. Haematologica. 2011;96(12):1792–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pelosi E, Castelli G, Testa U. Targeting LSCs through membrane antigens selectively or preferentially expressed on these cells. Blood Cells Mol Dis. 2015;55(4):336–46.

    Article  CAS  PubMed  Google Scholar 

  70. Busfield SJ et al. Targeting of acute myeloid leukemia in vitro and in vivo with an anti-CD123 mAb engineered for optimal ADCC. Leukemia. 2014;28(11):2213–21.

    Article  CAS  PubMed  Google Scholar 

  71. Jin L et al. Monoclonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell. 2009;5(1):31–42.

    Article  CAS  PubMed  Google Scholar 

  72. Smith BD et al. First-in Man, Phase 1 Study of CSL362 (Anti-IL3Ralpha/Anti-CD123 Monoclonal Antibody) in Patients with CD123+ Acute Myeloid Leukemia (AML) in CR at High Risk for Early Relapse, in American Society of Hematology. 2014, American Society of Hematology: San Francisco, CA. p. 120.

  73. Kung Sutherland MS et al. SGN-CD123A, a Pyrrolobenzodiazepine Dimer linked Anti-CD123 Antibody Drug Conjugate, Demonstrates Effective ANti-Leukemic Activity in Multiple Preclinical Models of AML. Blood. 2015;126:330.

    Google Scholar 

  74. Kovtun Y et al. ANnovel antibody drug conjugate of a CD123-targeting antibody with a potent DNA-Alkylator is highly active in preclinical models of AML with poor prognosis. EHA Learning Center. 2016: p. 135339.

  75. Ritchey J et al. Targeting CD123 in Leukemic Stem Cells Using Dual Affinity Re-Targeting Molecults (DARTs(R)). Blood Cancer J. 2013;122:360.

    Google Scholar 

  76. Bakker AB et al. C-type lectin-like molecule-1: a novel myeloid cell surface marker associated with acute myeloid leukemia. Cancer Res. 2004;64(22):8443–50.

    Article  CAS  PubMed  Google Scholar 

  77. Lu H et al. Targeting human C-type lectin-like molecule-1 (CLL1) with a bispecific antibody for immunotherapy of acute myeloid leukemia. Angew Chem Int Ed Engl. 2014;53(37):9841–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Liu J et al. Pre-Clinical Development of a Humanized Anti-CD47 Antibody with Anti-Cancer Therapeutic Potential. PLoS ONE. 2015;10(9), e0137345.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Konig H, Levis M. Targeting FLT3 to treat leukemia. Expert Opin Ther Targets. 2015;19(1):37–54.

    Article  CAS  PubMed  Google Scholar 

  80. Shafer D, Grant S. Update on rational targeted therapy in AML. Blood Rev. 2016;30(4):275–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dana Kennedy, Megan O’Meara, Steve Alley, and Bill Arthur for their critical reading of the manuscript

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Feldman.

Ethics declarations

Conflict of Interest

Phillip M. Garfin and Eric J. Feldman are employees and stock holders of Seattle Genetics Inc.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Acute Myeloid Leukemias

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garfin, P.M., Feldman, E.J. Antibody-Based Treatment of Acute Myeloid Leukemia. Curr Hematol Malig Rep 11, 545–552 (2016). https://doi.org/10.1007/s11899-016-0349-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-016-0349-7

Keywords

Navigation