Skip to main content

Advertisement

Log in

I Walk the Other Line: Myelodysplastic/Myeloproliferative Neoplasm Overlap Syndromes

  • Myelodysplastic Syndromes (M Sekeres, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Patients with the myelodysplastic syndromes/myeloproliferative neoplasm (MDS/MPN) overlap, including chronic myelomonocytic leukemia (CMML), atypical chronic myeloid leukemia (aCML), MDS/MPN-unclassifiable (MDS/MPN-U), and refractory anemia with ring sideroblasts associated with marked thrombocytosis (RARS-T), often present with findings of both dysplasia and marrow proliferation, occupying the border region of two seemingly divergent camps. Historically, these disorders which have been lumped with either MDS or MPN have represented a minority, or been excluded all together, from the development of prognostic models and clinical trials. Therefore, Food and Drug Administration approved therapies specifically for overlap subtypes are lacking. More recently, the revolution in molecular genetics has led to discovery of mutations enacting pathways that result in the distinct biology and presentation of the overlap syndromes. Additionally, these recurrent genetic lesions have a prognostic value and are potential therapeutic targets, which might ultimately improve patient outcomes by reducing disease-related symptoms and complications and by prolonging survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cash J. I walk the line. With his hot and blue guitar. Nashville: Sun Records; 1955.

    Google Scholar 

  2. Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937–51.

    Article  CAS  PubMed  Google Scholar 

  3. Swerdlow S, Campo E, Harris NL, Jaffe E, Pileri S, Stein H. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: International Agency for Research on Cancer; 2008.

    Google Scholar 

  4. Strom SS, Gu Y, Gruschkus SK, Pierce SA, Estey EH. Risk factors of myelodysplastic syndromes: a case-control study. Leukemia. 2005;19(11):1912–8.

    Article  CAS  PubMed  Google Scholar 

  5. Surveillance, Epidemiology, and End Results (SEER) Program (2000–2012). In: National Cancer Institute D, Surveillance Research Program, Surveillance Systems Branch, editor. Vol. 2014; 2014.

  6. Osca-Gelis G, Puig-Vives M, Saez M, Gallardo D, Lloveras N, Marcos-Gragera R. Population-based incidence of myeloid malignancies: fifteen years of epidemiological data in the province of Girona, Spain. Haematologica. 2013;98(8):e95–7.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002;100(7):2292–302.

    Article  CAS  PubMed  Google Scholar 

  8. Beran M, Wen S, Shen Y, et al. Prognostic factors and risk assessment in chronic myelomonocytic leukemia: validation study of the M.D. Anderson Prognostic Scoring System. Leuk Lymphoma. 2007;48(6):1150–60.

    Article  PubMed  Google Scholar 

  9. Onida F, Kantarjian HM, Smith TL, et al. Prognostic factors and scoring systems in chronic myelomonocytic leukemia: a retrospective analysis of 213 patients. Blood. 2002;99(3):840–9.

    Article  CAS  PubMed  Google Scholar 

  10. Pulliam-Leath AC, Ciccone SL, Nalepa G, et al. Genetic disruption of both Fancc and Fancg in mice recapitulates the hematopoietic manifestations of Fanconi anemia. Blood. 2010;116(16):2915–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Walter RB, Gyurkocza B, Storer BE, et al. Comparison of minimal residual disease as outcome predictor for AML patients in first complete remission undergoing myeloablative or nonmyeloablative allogeneic hematopoietic cell transplantation. Leukemia. 2014.

  12. Costa R, Abdulhaq H, Haq B, et al. Activity of azacitidine in chronic myelomonocytic leukemia. Cancer. 2011;117(12):2690–6.

    Article  CAS  PubMed  Google Scholar 

  13. Wijermans PW, Ruter B, Baer MR, Slack JL, Saba HI, Lubbert M. Efficacy of decitabine in the treatment of patients with chronic myelomonocytic leukemia (CMML). Leuk Res. 2008;32(4):587–91.

    Article  CAS  PubMed  Google Scholar 

  14. Wijermans P, Lubbert M, Verhoef G, et al. Low-dose 5-aza-2′-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients. J Clin Oncol. 2000;18(5):956–62.

    CAS  PubMed  Google Scholar 

  15. Aribi A, Borthakur G, Ravandi F, et al. Activity of decitabine, a hypomethylating agent, in chronic myelomonocytic leukemia. Cancer. 2007;109(4):713–7.

    Article  CAS  PubMed  Google Scholar 

  16. Braun T, Itzykson R, Renneville A, et al. Molecular predictors of response to decitabine in advanced chronic myelomonocytic leukemia: a phase 2 trial. Blood. 2011;118(14):3824–31.

    Article  CAS  PubMed  Google Scholar 

  17. Greenberg P, Cox C, LeBeau MM, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89(6):2079–88.

    CAS  PubMed  Google Scholar 

  18. Greenberg PL, Tuechler H, Schanz J, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454–65.

    Article  CAS  PubMed  Google Scholar 

  19. Such E, Germing U, Malcovati L, et al. Development and validation of a prognostic scoring system for patients with chronic myelomonocytic leukemia. Blood. 2013;121(15):3005–15. This recent CMML-specific prognostic model was derived from a large and well-kept database. It includes factors readily available in most pathology labs and has been shown to have better prognostic discrimination over the MDAPS.

    Article  CAS  PubMed  Google Scholar 

  20. Calvo X, Nomdedeu M, Costa D, et al. Evaluation of two prognostic scoring systems for chronic myelomonocytic leukemia (CMML): CMML-Specific Prognostic Scoring System (CPSS) and MD Anderson Prognostic Score (MDAPS) in a series of 122 cases of de novo CMML. Blood. 2013;122(21):2810.

    Google Scholar 

  21. Patnaik MM, Padron E, LaBorde RR, et al. Mayo prognostic model for WHO-defined chronic myelomonocytic leukemia: ASXL1 and spliceosome component mutations and outcomes. Leukemia. 2013;27(7):1504–10.

    Article  CAS  PubMed  Google Scholar 

  22. Itzykson R, Kosmider O, Renneville A, et al. Prognostic score including gene mutations in chronic myelomonocytic leukemia. J Clin Oncol. 2013;31(19):2428–36.

    Article  CAS  PubMed  Google Scholar 

  23. Patnaik MM, Itzykson R, Lasho TL, et al. ASXL1 and SETBP1 mutations and their prognostic contribution in chronic myelomonocytic leukemia: a two-center study of 466 patients. Leukemia. 2014. Although not currently available in most pathology labs, testing for molecular markers will be more readily available in the near future. Not only will their prognostic information be useful in clinical decision making but may also predict response to particular treatments such as hypomethylating therapy

  24. Eissa H, Gooley TA, Sorror ML, et al. Allogeneic hematopoietic cell transplantation for chronic myelomonocytic leukemia: relapse-free survival is determined by karyotype and comorbidities. Biol Blood Marrow Transplant. 2011;17(6):908–15.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Park S, Labopin M, Yakoub-Agha I, et al. Allogeneic stem cell transplantation for chronic myelomonocytic leukemia: a report from the Societe Francaise de Greffe de Moelle et de Therapie Cellulaire. Eur J Haematol. 2013;90(5):355–64.

    Article  PubMed  Google Scholar 

  26. Cutler CS, Lee SJ, Greenberg P, et al. A decision analysis of allogeneic bone marrow transplantation for the myelodysplastic syndromes: delayed transplantation for low-risk myelodysplasia is associated with improved outcome. Blood. 2004;104(2):579–85.

    Article  CAS  PubMed  Google Scholar 

  27. Koreth J, Pidala J, Perez WS, et al. A decision analysis of reduced-intensity conditioning allogeneic hematopoietic stem cell transplantation for older patients with de-novo myelodysplastic syndrome (MDS): early transplantation offers survival benefit in higher-risk MDS. ASH Annu Meet Abstr. 2011;118(21):115.

    Google Scholar 

  28. Sorror ML. How I, assess comorbidities before hematopoietic cell transplantation. Blood. 2013;121(15):2854–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Wardrop D, Steensma DP. Is refractory anaemia with ring sideroblasts and thrombocytosis (RARS-T) a necessary or useful diagnostic category? Br J Haematol. 2009;144(6):809–17.

    Article  PubMed  Google Scholar 

  30. Wattel E, Guerci A, Hecquet B, et al. A randomized trial of hydroxyurea versus VP16 in adult chronic myelomonocytic leukemia. Groupe Francais des Myelodysplasies and European CMML Group. Blood. 1996;88(7):2480–7.

    CAS  PubMed  Google Scholar 

  31. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10(3):223–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Ades L, Sekeres MA, Wolfromm A, et al. Predictive factors of response and survival among chronic myelomonocytic leukemia patients treated with azacitidine. Leuk Res. 2013;37(6):609–13.

    Article  CAS  PubMed  Google Scholar 

  33. Atypical. In: Dorland W, editor. The American pocket medical dictionary. Philadelphia: W. B. Saunders Company; 1943. p. 1037.

    Google Scholar 

  34. Hernandez JM, del Canizo MC, Cuneo A, et al. Clinical, hematological and cytogenetic characteristics of atypical chronic myeloid leukemia. Ann Oncol. 2000;11(4):441–4.

    Article  CAS  PubMed  Google Scholar 

  35. Kurzrock R, Bueso-Ramos CE, Kantarjian H, et al. BCR rearrangement-negative chronic myelogenous leukemia revisited. J Clin Oncol. 2001;19(11):2915–26.

    CAS  PubMed  Google Scholar 

  36. Orazi A, Germing U. The myelodysplastic/myeloproliferative neoplasms: myeloproliferative diseases with dysplastic features. Leukemia. 2008;22(7):1308–19.

    Article  CAS  PubMed  Google Scholar 

  37. Koldehoff M, Beelen DW, Trenschel R, et al. Outcome of hematopoietic stem cell transplantation in patients with atypical chronic myeloid leukemia. Bone Marrow Transplant. 2004;34(12):1047–50.

    Article  CAS  PubMed  Google Scholar 

  38. Jabbour E, Kantarjian H, Cortes J, et al. PEG-IFN-alpha-2b therapy in BCR-ABL-negative myeloproliferative disorders: final result of a phase 2 study. Cancer. 2007;110(9):2012–8.

    Article  CAS  PubMed  Google Scholar 

  39. Mao L, You L, Yang M, Li Y, Ye X, Tong H-Y. The first case of decitabine successfully in treatment of atypical chronic myeloid leukemia with CEBPA double mutation. Chemotherapy. 2013;2(1):114.

    Google Scholar 

  40. Thepot S, Itzykson R, Seegers V, et al. Treatment of progression of Philadelphia-negative myeloproliferative neoplasms to myelodysplastic syndrome or acute myeloid leukemia by azacitidine: a report on 54 cases on the behalf of the Groupe Francophone des Myelodysplasies (GFM). Blood. 2010;116(19):3735–42.

    Article  CAS  PubMed  Google Scholar 

  41. Piazza R, Valletta S, Winkelmann N, et al. Recurrent SETBP1 mutations in atypical chronic myeloid leukemia. Nat Genet. 2013;45(1):18–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Maxson JE, Gotlib J, Pollyea DA, et al. Oncogenic CSF3R mutations in chronic neutrophilic leukemia and atypical CML. N Engl J Med. 2013;368(19):1781–90. This paper describes a common mutation in atypical CML. This finding has the potential to improve diagnostic accuracy and provide a therapeutic target.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Schmitt-Graeff A, Thiele J, Zuk I, Kvasnicka HM. Essential thrombocythemia with ringed sideroblasts: a heterogeneous spectrum of diseases, but not a distinct entity. Haematologica. 2002;87(4):392–9.

    PubMed  Google Scholar 

  44. Visconte V, Makishima H, Jankowska A, et al. SF3B1, a splicing factor is frequently mutated in refractory anemia with ring sideroblasts. Leukemia. 2012;26(3):542–5. This paper links the SF3B1 genotype with the ringed sideroblasts phenotype, eponymous to RARS and RARS-T.

    Article  CAS  PubMed  Google Scholar 

  45. Visconte V, Rogers HJ, Singh J, et al. SF3B1 haploinsufficiency leads to formation of ring sideroblasts in myelodysplastic syndromes. Blood. 2012;120(16):3173–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Liu Y, Tabarroki A, Visconte V, et al. A prognostic scoring system for unclassifiable MDS and MDS/MPN. ASH Annu Meet Abstr. 2012;120(21):1701.

    Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Aaron T. Gerds received a grant from the American Society for Blood and Marrow Transplant.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron T. Gerds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerds, A.T. I Walk the Other Line: Myelodysplastic/Myeloproliferative Neoplasm Overlap Syndromes. Curr Hematol Malig Rep 9, 400–406 (2014). https://doi.org/10.1007/s11899-014-0233-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-014-0233-2

Keywords

Navigation