Skip to main content

Advertisement

Log in

Is Targeted Therapy Feasible in Acute Myelogenous Leukemia?

  • Acute Leukemias (F Ravandi, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

The prognosis for patients with acute myeloid leukemia (AML) is determined to a large degree by the biology of the leukemic cell. In recent years, the identification and characterization of genetic aberrations has vastly improved our understanding of the pathogenesis of AML. In contrast, however, there has been a lack of clinically meaningful therapeutic advances. The same chemotherapeutic strategies have been applied to AML for several decades now, and while these regimens are effective in inducing remission, most patients relapse within months after initial treatment. Hence, there is an urgent need for novel therapies. We review herein a number of lines of laboratory and clinical trial data supporting the clinical value of targeted treatment approaches that will likely result in improved outcomes for patients with AML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Vardiman JW et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937–51.

    Article  CAS  PubMed  Google Scholar 

  2. Patel JP et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med. 2012;366(12):1079–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Grossmann V et al. A novel hierarchical prognostic model of AML solely based on molecular mutations. Blood. 2012;120(15):2963–72.

    Article  CAS  PubMed  Google Scholar 

  4. Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002;100(5):1532–42.

    Article  CAS  PubMed  Google Scholar 

  5. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059–74

    Google Scholar 

  6. Lowenberg B et al. High-dose daunorubicin in older patients with acute myeloid leukemia. N Engl J Med. 2009;361(13):1235–48.

    Article  PubMed  Google Scholar 

  7. Cassileth PA et al. Maintenance chemotherapy prolongs remission duration in adult acute nonlymphocytic leukemia. J Clin Oncol. 1988;6(4):583–7.

    CAS  PubMed  Google Scholar 

  8. Shah A et al. Survival and cure of acute myeloid leukaemia in England, 1971-2006: a population-based study. Br J Haematol. 2013;162(4):509–16.

    Article  PubMed  Google Scholar 

  9. Appelbaum FR et al. Age and acute myeloid leukemia. Blood. 2006;107(9):3481–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Pulte D, Gondos A, Brenner H. Improvements in survival of adults diagnosed with acute myeloblastic leukemia in the early 21st century. Haematologica. 2008;93(4):594–600.

    Article  PubMed  Google Scholar 

  11. Welch JS et al. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012;150(2):264–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Bacher U et al. Prognostic relevance of FLT3-TKD mutations in AML: the combination matters–an analysis of 3082 patients. Blood. 2008;111(5):2527–37.

    Article  CAS  PubMed  Google Scholar 

  13. Thiede C et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 2002;99(12):4326–35.

    Article  CAS  PubMed  Google Scholar 

  14. Kottaridis PD et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood. 2001;98(6):1752–9.

    Article  CAS  PubMed  Google Scholar 

  15. Schneider F et al. Age-dependent frequencies of NPM1 mutations and FLT3-ITD in patients with normal karyotype AML (NK-AML). Ann Hematol. 2012;91(1):9–18.

    Article  CAS  PubMed  Google Scholar 

  16. Christiansen DH et al. Mutations of genes in the receptor tyrosine kinase (RTK)/RAS-BRAF signal transduction pathway in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia. 2005;19(12):2232–40.

    Article  CAS  PubMed  Google Scholar 

  17. Cortes JE et al. Phase 1 AML study of AC220, a potent and selective second generation FLT3 receptor tyrosine kinase inhibitor. Blood (ASH Ann Meet Abstr). 2008;112:abstract 767.

    Google Scholar 

  18. Cortes JE et al. Final results of a phase 2 open-label, monotherapy efficacy and safety study of quizartinib (AC220) in patients ≥ 60 years of age with FLT3 ITD positive or negative relapsed/refractory acute myeloid leukemia. Blood (ASH Ann Meet Abstr). 2012;120:Abstract 48.

    Google Scholar 

  19. Levis JM et al. Final results of a phase 2 open-label, monotherapy efficacy and safety study of quizartinib (AC220) in patients with FLT3-ITD positive or negative relapsed/refractory acute myeloid leukemia after second-line chemotherapy or hematopoietic stem cell transplantation. Blood (ASH Ann Meet Abstr). 2012;120:Abstract 673.

    Google Scholar 

  20. Sexauer A et al. Terminal myeloid differentiation in vivo is induced by FLT3 inhibition in FLT3/ITD AML. Blood. 2012;120(20):4205–14. This study demonstrated that inhibition of FLT3 by quizartinib leads to terminal myeloid differentation of bone marrow blasts associated with a clinical differentation syndrome.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Fathi AT et al. FLT3 inhibitor-induced neutrophilic dermatosis. Blood. 2013;122(2):239–42.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang W et al. Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. J Natl Cancer Inst. 2008;100(3):184–98.

    Article  CAS  PubMed  Google Scholar 

  23. Borthakur G et al. Phase I study of sorafenib in patients with refractory or relapsed acute leukemias. Haematologica. 2011;96(1):62–8. Single agent sorafenib is well tolerated and confers marked antileukemic activity in relapsed/refractory, FLT3/ITD mutated AML patients.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Metzelder SK et al. High activity of sorafenib in FLT3-ITD-positive acute myeloid leukemia synergizes with allo-immune effects to induce sustained responses. Leukemia. 2012;26(11):2353–9.

    Article  CAS  PubMed  Google Scholar 

  25. Ravandi F et al. Phase I/II study of combination therapy with sorafenib, idarubicin, and cytarabine in younger patients with acute myeloid leukemia. J Clin Oncol. 2010;28(11):1856–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Millward MJ et al. The multikinase inhibitor midostaurin (PKC412A) lacks activity in metastatic melanoma: a phase IIA clinical and biologic study. Br J Cancer. 2006;95(7):829–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Fischer T et al. Phase IIB trial of oral Midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J Clin Oncol. 2010;28(28):4339–45.

    Article  CAS  PubMed  Google Scholar 

  28. Stone RM et al. Phase IB study of the FLT3 kinase inhibitor midostaurin with chemotherapy in younger newly diagnosed adult patients with acute myeloid leukemia. Leukemia. 2012;26(9):2061–8. In this study, the authors demonstrated that the combination of the FLT3 inhibitor midostaurin and standard chemotherapy is feasible and effective, inducing high response and survival rates in newly diagnosed AML patients.

    Article  CAS  PubMed  Google Scholar 

  29. Taylor VC et al. The myeloid-specific sialic acid-binding receptor, CD33, associates with the protein-tyrosine phosphatases, SHP-1 and SHP-2. J Biol Chem. 1999;274(17):11505–12.

    Article  CAS  PubMed  Google Scholar 

  30. Jilani I et al. Differences in CD33 intensity between various myeloid neoplasms. Am J Clin Pathol. 2002;118(4):560–6.

    Article  PubMed  Google Scholar 

  31. Bross PF et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7(6):1490–6.

    CAS  PubMed  Google Scholar 

  32. Larson RA et al. Antibody-targeted chemotherapy of older patients with acute myeloid leukemia in first relapse using Mylotarg (gemtuzumab ozogamicin). Leukemia. 2002;16(9):1627–36.

    Article  CAS  PubMed  Google Scholar 

  33. Giles FJ et al. Mylotarg (gemtuzumab ozogamicin) therapy is associated with hepatic venoocclusive disease in patients who have not received stem cell transplantation. Cancer. 2001;92(2):406–13.

    Article  CAS  PubMed  Google Scholar 

  34. Burnett AK et al. Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamicin: results of the MRC AML15 trial. J Clin Oncol. 2011;29(4):369–77.

    Article  CAS  PubMed  Google Scholar 

  35. Burnett AK et al. Addition of gemtuzumab ozogamicin to induction chemotherapy improves survival in older patients with acute myeloid leukemia. J Clin Oncol. 2012;30(32):3924–31.

    Article  CAS  PubMed  Google Scholar 

  36. Burnett AK et al. The addition of gemtuzumab ozogamicin to low-dose Ara-C improves remission rate but does not significantly prolong survival in older patients with acute myeloid leukaemia: results from the LRF AML14 and NCRI AML16 pick-a-winner comparison. Leukemia. 2013;27(1):75–81.

    Article  CAS  PubMed  Google Scholar 

  37. Petersdorf SH et al. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood. 2013;121(24):4854–60.

    Article  CAS  PubMed  Google Scholar 

  38. Castaigne S et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet. 2012;379(9825):1508–16.

    Article  CAS  PubMed  Google Scholar 

  39. Hills RK et al. The addition of Gemtuzumab Ozogamicin (GO) to induction chemotherapy reduces relapse and improves survival in patients without adverse risk karyotype: results of an individual patient meta-analysis of the five randomised trials. Blood (ASH Ann Meet Abstr). 2013;122:abstract 356.

    Google Scholar 

  40. Baeuerle PA, Reinhardt C. Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res. 2009;69(12):4941–4.

    Article  CAS  PubMed  Google Scholar 

  41. Krupka C et al. Evaluation of CD33 expression and functional analysis of the CD33/CD3 bispecific BiTE® antibody AMG 330 in primary AML samples. Blood (ASH Ann Meet Abstr). 2013;122:abstract 239.

    Google Scholar 

  42. Loetscher M et al. Cloning of a human seven-transmembrane domain receptor, LESTR, that is highly expressed in leukocytes. J Biol Chem. 1994;269(1):232–7.

    CAS  PubMed  Google Scholar 

  43. Murdoch C. CXCR4: chemokine receptor extraordinaire. Immunol Rev. 2000;177:175–84.

    Article  CAS  PubMed  Google Scholar 

  44. Kollet O et al. Human CD34(+)CXCR4(-) sorted cells harbor intracellular CXCR4, which can be functionally expressed and provide NOD/SCID repopulation. Blood. 2002;100(8):2778–86.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Y et al. Intracellular localization and constitutive endocytosis of CXCR4 in human CD34+ hematopoietic progenitor cells. Stem Cells. 2004;22(6):1015–29.

    Article  CAS  PubMed  Google Scholar 

  46. Mohle R et al. The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood. 1998;91(12):4523–30.

    CAS  PubMed  Google Scholar 

  47. Spoo AC et al. CXCR4 is a prognostic marker in acute myelogenous leukemia. Blood. 2007;109(2):786–91.

    Article  CAS  PubMed  Google Scholar 

  48. Voermans C et al. Migratory behavior of leukemic cells from acute myeloid leukemia patients. Leukemia. 2002;16(4):650–7.

    Article  CAS  PubMed  Google Scholar 

  49. Yannaki E et al. Hematopoietic stem cell mobilization for gene therapy: superior mobilization by the combination of granulocyte-colony stimulating factor plus plerixafor in patients with beta-thalassemia major. Hum Gene Ther. 2013;24(10):852–60.

    Article  CAS  PubMed  Google Scholar 

  50. Petit I et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol. 2002;3(7):687–94.

    Article  CAS  PubMed  Google Scholar 

  51. Uy GL et al. A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia. Blood. 2012;119(17):3917–24. This trial showed that the combination of plerixafor and conventional chemotherapy is feasible and improves remission rates by sensitizing leukemic blasts to cytotoxic treatment.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Greenberg PL et al. Mitoxantrone, etoposide, and cytarabine with or without valspodar in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome: a phase III trial (E2995). J Clin Oncol. 2004;22(6):1078–86.

    Article  CAS  PubMed  Google Scholar 

  53. Roboz GJ et al. Combining decitabine with plerixafor yields a high response rate in newly diagnosed older patients with AML. Blood (ASH Ann Meet Abstr). 2013;122:abstract 621.

    Google Scholar 

  54. Chien S et al. Mobilization of blasts and leukemia stem cells by anti-CXCR4 antibody BMS-936564 (MDX 1338) in patients with relapsed/refractory acute myeloid leukemia. Blood (ASH Ann Meet Abstr). 2013;122:abstract 3882.

    Google Scholar 

  55. Kuhne MR et al. BMS-936564/MDX-1338: a fully human anti-CXCR4 antibody induces apoptosis in vitro and shows antitumor activity in vivo in hematologic malignancies. Clin Cancer Res. 2013;19(2):357–66.

    Article  CAS  PubMed  Google Scholar 

  56. Baylin SB et al. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res. 1998;72:141–96.

    Article  CAS  PubMed  Google Scholar 

  57. Claus R et al. DNA methylation profiling in acute myeloid leukemia: from recent technological advances to biological and clinical insights. Future Oncol. 2010;6(9):1415–31.

    Article  CAS  PubMed  Google Scholar 

  58. Chim CS, Wong AS, Kwong YL. Infrequent hypermethylation of CEBPA promotor in acute myeloid leukaemia. Br J Haematol. 2002;119(4):988–90.

    Article  CAS  PubMed  Google Scholar 

  59. Chim CS, Liang R, Kwong YL. Hypermethylation of gene promoters in hematological neoplasia. Hematol Oncol. 2002;20(4):167–76.

    Article  CAS  PubMed  Google Scholar 

  60. Herman JG et al. Hypermethylation-associated inactivation indicates a tumor suppressor role for p15INK4B. Cancer Res. 1996;56(4):722–7.

    CAS  PubMed  Google Scholar 

  61. Flotho C et al. The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia. 2009;23(6):1019–28.

    Article  CAS  PubMed  Google Scholar 

  62. Lund P et al. Transformation-dependent silencing of tumor-selective apoptosis-inducing TRAIL by DNA hypermethylation is antagonized by decitabine. Mol Cancer Ther. 2011;10(9):1611–23.

    Article  CAS  PubMed  Google Scholar 

  63. Pinto A et al. 5-Aza-2'-deoxycytidine induces terminal differentiation of leukemic blasts from patients with acute myeloid leukemias. Blood. 1984;64(4):922–9.

    CAS  PubMed  Google Scholar 

  64. Kantarjian HM et al. Multicenter, randomized, open-label, phase III trial of decitabine versus patient choice, with physician advice, of either supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed acute myeloid leukemia. J Clin Oncol. 2012;30(21):2670–7.

    Article  CAS  PubMed  Google Scholar 

  65. Curik N et al. 5-azacitidine in aggressive myelodysplastic syndromes regulates chromatin structure at PU.1 gene and cell differentiation capacity. Leukemia. 2012;26(8):1804–11.

    Article  CAS  PubMed  Google Scholar 

  66. Fenaux P et al. Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J Clin Oncol. 2010;28(4):562–9.

    Article  CAS  PubMed  Google Scholar 

  67. Klco JM et al. Genomic impact of transient low-dose decitabine treatment on primary AML cells. Blood. 2013;121(9):1633–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Yan P et al. Genome-wide methylation profiling in decitabine-treated patients with acute myeloid leukemia. Blood. 2012;120(12):2466–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Ravandi F et al. Phase 2 study of azacytidine plus sorafenib in patients with acute myeloid leukemia and FLT-3 internal tandem duplication mutation. Blood. 2013;121(23):4655–62.

    Article  CAS  PubMed  Google Scholar 

  70. Konig H, Levis MJ. The combination of FLT3 inhibition and hypomethylation confers synergistic anti-leukemic effects on FLT3/ITD positive AML cell lines and primary cells. Blood (ASH Ann Meet Abstr). 2013;122:abstract 3965.

    Google Scholar 

  71. Ribeiro AF et al. Mutant DNMT3A: a marker of poor prognosis in acute myeloid leukemia. Blood. 2012;119(24):5824–31.

    Article  CAS  PubMed  Google Scholar 

  72. Chou WC et al. TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with intermediate-risk cytogenetics. Blood. 2011;118(14):3803–10.

    Article  CAS  PubMed  Google Scholar 

  73. Abdel-Wahab O et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood. 2009;114(1):144–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Paschka P et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol. 2010;28(22):3636–43.

    Article  CAS  PubMed  Google Scholar 

  75. Thol F et al. IDH1 mutations in patients with myelodysplastic syndromes are associated with an unfavorable prognosis. Haematologica. 2010;95(10):1668–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Abbas S et al. Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value. Blood. 2010;116(12):2122–6.

    Article  CAS  PubMed  Google Scholar 

  77. Metzeler KH et al. ASXL1 mutations identify a high-risk subgroup of older patients with primary cytogenetically normal AML within the ELN Favorable genetic category. Blood. 2011;118(26):6920–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Schnittger S et al. ASXL1 exon 12 mutations are frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcome. Leukemia. 2013;27(1):82–91.

    Article  CAS  PubMed  Google Scholar 

  79. Abdel-Wahab O, Patel J, Levine RL. Clinical implications of novel mutations in epigenetic modifiers in AML. Hematol Oncol Clin N Am. 2011;25(6):1119–33.

    Article  Google Scholar 

  80. Abdel-Wahab O, Levine RL. Mutations in epigenetic modifiers in the pathogenesis and therapy of acute myeloid leukemia. Blood. 2013;121(18):3563–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Yen K, et al. IDH1 mutant inhibitor induces cellular differentiation and offers a combination benefit with Ara-C in a primary human Idh1 mutant AML xenograft model. (ASH Annual Meeting Abstracts). 2013;122:abstract 3946.

  82. McCabe MT et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature. 2012;492(7427):108–12.

    Article  CAS  PubMed  Google Scholar 

  83. Knutson SK et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol. 2012;8(11):890–6.

    CAS  PubMed  Google Scholar 

  84. Culhane JC et al. Comparative analysis of small molecules and histone substrate analogues as LSD1 lysine demethylase inhibitors. J Am Chem Soc. 2010;132(9):3164–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Kruger RG et al. Inhibition of LSD1 as a therapeutic strategy for the treatment of acute myeloid leukemia. Blood (ASH Ann Meet Abstr). 2013;122:abstract 3964.

    Google Scholar 

  86. Kruidenier L et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature. 2012;488(7411):404–8.

    Article  CAS  PubMed  Google Scholar 

  87. Riera L et al. Core binding factor acute myeloid leukaemia and c-KIT mutations. Oncol Rep. 2013;29(5):1867–72.

    CAS  PubMed  Google Scholar 

  88. Paschka P et al. Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B Study. J Clin Oncol. 2006;24(24):3904–11.

    Article  CAS  PubMed  Google Scholar 

  89. Cairoli R et al. Prognostic impact of c-KIT mutations in core binding factor leukemias: an Italian retrospective study. Blood. 2006;107(9):3463–8.

    Article  CAS  PubMed  Google Scholar 

  90. Dos Santos C et al. The Src and c-Kit kinase inhibitor dasatinib enhances p53-mediated targeting of human acute myeloid leukemia stem cells by chemotherapeutic agents. Blood. 2013;122(11):1900–13.

    Article  PubMed  Google Scholar 

  91. McCubrey JA et al. Targeting survival cascades induced by activation of Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways for effective leukemia therapy. Leukemia. 2008;22(4):708–22.

    Article  CAS  PubMed  Google Scholar 

  92. Steelman LS et al. Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia. Leukemia. 2008;22(4):686–707.

    Article  CAS  PubMed  Google Scholar 

  93. Neubauer A et al. Prognostic importance of mutations in the ras proto-oncogenes in de novo acute myeloid leukemia. Blood. 1994;83(6):1603–11.

    CAS  PubMed  Google Scholar 

  94. Bos JL. Ras oncogenes in human cancer: a review. Cancer Res. 1989;49(17):4682–9.

    CAS  PubMed  Google Scholar 

  95. Wong KK. Recent developments in anti-cancer agents targeting the Ras/Raf/ MEK/ERK pathway. Recent Pat Anticancer Drug Discov. 2009;4(1):28–35.

    Article  CAS  PubMed  Google Scholar 

  96. Adjei AA et al. Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. J Clin Oncol. 2008;26(13):2139–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Jain N, et al. Phase II study of the oral MEK inhibitor selumetinib in advanced Acute Myeloid Leukemia (AML): a University of Chicago phase II consortium trial. Clin Cancer Res. 2013. Selumetinib confers modest single agent antileukemic activity in advanced AML but displays a favorable toxicity profile. Combination therapies with other drugs targeting different pathways should therefore be explored.

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Heiko Konig declares no potential conflicts of interest relevant to this article.

Dr. Mark Levis received a grant from the National Cancer Institute (SPORE P50 CA 100632-06).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Levis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konig, H., Levis, M. Is Targeted Therapy Feasible in Acute Myelogenous Leukemia?. Curr Hematol Malig Rep 9, 118–127 (2014). https://doi.org/10.1007/s11899-014-0198-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-014-0198-1

Keywords

Navigation