Skip to main content

Advertisement

Log in

Progress in Our Understanding of the Gut Microbiome: Implications for the Clinician

  • Large Intestine (B Cash, Section Editor)
  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

The investigation of the role of the microbial communities of our gastrointestinal tract (microbiota) has accelerated dramatically in recent years thanks to rapid developments in the technologies that allow us to fully enumerate and evaluate the full complement of bacterial species and strains that normally inhabit the gut. Laboratory studies in a range of inventive animal models continue to provide insights into the role of the microbiota in health and to generate plausible hypotheses relating to its potential involvement in the pathogenesis of human disease. Studies of the composition of human gut microbiota continue to accumulate but their interpretation needs to be tempered by an appreciation of the limitations of single-point-in-time studies of fecal samples from small study populations. Nevertheless, clinically important examples of a central role for microbiota-host interactions in disease pathogenesis have emerged and many more have been postulated but await confirmation in appropriately powered and conducted studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Chey WD. Food: the main course to wellness and illness in patients with irritable bowel syndrome. Am J Gastroenterol. 2016;111:366–71. A comprehensive discussion of the role of food in IBS.

    Article  PubMed  Google Scholar 

  2. Fraher MH, O’Toole PW, Quigley EMM. Techniques used to characterise the intestinal microbiota: a guide for the clinician. Nat Rev Gastroenterol. 2012;9:312–22.

    Article  CAS  Google Scholar 

  3. Lepage P, Leclerc MC, Joossens M, et al. A metagenomic insight into our gut’s microbiome. Gut. 2013;62:146–58. Well-presented review of these emerging technologies and what they may mean in the investigation of GI disease.

    Article  PubMed  Google Scholar 

  4. Sunagawa S, Mende DR, Zeller G, et al. Metagenomic species profiling using universal phylogenetic marker genes. Nat Methods. 2013;10:1196–9.

    Article  CAS  PubMed  Google Scholar 

  5. Tringe SG, von Mering C, Kobayashi A, et al. Comparative metagenomics of microbial communities. Science. 2005;308:554–7.

    Article  CAS  PubMed  Google Scholar 

  6. Thomas T, Gilbert J, Meyer F. Metagenomics—a guide from sampling to data analysis. Microb Inform Exp. 2012;2:3.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wang W-L, Xu S-Y, Ren Z-G, et al. Application of metagenomics in the human gut microbiome. World J Gastroenterol. 2015;21:803–14. A relatively new and increasingly utilized technology explained.

    PubMed  PubMed Central  Google Scholar 

  8. Quigley EM. Gut bacteria in health and disease. Gastroenterol Hepatol (N Y). 2013;9:560–9.

    Google Scholar 

  9. Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Karlsson FH, Nookaew I, Nielsen J. Metagenomic data utilization and analysis (MEDUSA) and construction of a global gut microbial gene catalogue. PLoS Comput Biol. 2014;10:e1003706.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Marques TM, Wall R, Ross RP, et al. Programming infant gut microbiota: influence of dietary and environmental factors. Curr Opin Biotechnol. 2010;21:149–56.

    Article  CAS  PubMed  Google Scholar 

  13. Fouhy F, Ross RP, Fitzgerald GF, et al. Composition of the early intestinal microbiota-knowledge, knowledge gaps and the use of high-throughput sequencing to address these gaps. Gut Microbes. 2012;3(4):1–18.

    Google Scholar 

  14. Palmer C, Bik EM, DiGiulio DB, et al. Development of the human infant intestinal microbiota. PLoS Biol. 2007;5:1556–73.

    Article  CAS  Google Scholar 

  15. Koenig JE, Spor A, Scalfone N, et al. Succession of microbial consortia in the developing infant gut microbiome. PNAS. 2011;108:4578–85.

    Article  CAS  PubMed  Google Scholar 

  16. Mariat D, Firmesse O, Levenez F, et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009;9:123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sekirov I, Russell SL, Antunes LC, et al. Gut microbiota in health and disease. Physiol Rev. 2010;90:859–904.

    Article  CAS  PubMed  Google Scholar 

  18. Fleshner M. The gut microbiota: a new player in the innate immune stress response? Brain Behav Immun. 2011;25:395–6.

    Article  PubMed  Google Scholar 

  19. Elson CO, Alexander KL. Host-microbiota interactions in the intestine. Dig Dis. 2015;33:131–6.

    Article  PubMed  Google Scholar 

  20. Cryan JF, O’Mahony SM. The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol Motil. 2011;23:187–92.

    Article  CAS  PubMed  Google Scholar 

  21. Viaud S, Saccheri F, Mignot G, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013;342:971–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qin J, Li R, Raes J, Arumugam M, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–U70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Claesson MJ, O’Toole PW. Evaluating the latest high-throughput molecular techniques for the exploration of microbial gut communities. Gut Microbes. 2010;1:277–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chang JY, Antonopoulos DA, Kalra A, et al. Decreased diversity of the fecal microbiome in recurrent clostridium difficile-associated diarrhea. J Infect Dis. 2008;197:435–8.

    Article  PubMed  Google Scholar 

  25. Hopkins MJ, Sharp R, Macfarlane GT. Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut. 2001;48:198–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Louie TJ, Byrne B, Emery J, et al. Differences of the fecal microflora with Clostridium difficile therapies. Clin Infect Dis. 2015;60 Suppl 2:S91–7.

    Article  PubMed  Google Scholar 

  27. Martin JS, Monaghan TM, Wilcox MH. Clostridium difficile infection: epidemiology, diagnosis and understanding transmission. Nat Rev Gastroenterol Hepatol. 2016;13:206–16. Puts the C difficile epidemic in perspective.

    Article  PubMed  Google Scholar 

  28. Louie TJ, Cannon K, Byrne B, et al. Fidaxomicin preserves the intestinal microbiome during and after treatment of Clostridium difficile infection (CDI) and reduces both toxin reexpression and recurrence of CDI. Clin Infect Dis. 2012;55 Suppl 2:S132–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gupta S, Allen-Vercoe E, Petrof EO. Fecal microbiota transplantation: in perspective. Therap Adv Gastroenterol. 2016;9:229–39. Good overview of an emerging field.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Song Y, Garg S, Girotra M, et al. Microbiota dynamics in patients treated with fecal microbiota transplantation for recurrent Clostridium difficile infection. PLoS One. 2013;8:e81330.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fuentes S, van Nood E, Tims S, et al. Reset of a critically disturbed microbial ecosystem: faecal transplant in recurrent Clostridium difficile infection. ISME J. 2014;8:1621–33.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shanahan F, Quigley EM. Manipulation of the microbiota for treatment of IBS and IBD—challenges and controversies. Gastroenterology. 2014;146:1554–63. Explores the promise and limitations of studies on the gut microbiota and related interventions in IBD and IBS.

    Article  PubMed  Google Scholar 

  33. Wang Z-K, Yang Y-S, Chen Y, et al. Intestinal microbiota pathogenesis and fecal microbiota transplantation for inflammatory bowel disease. World J Gastroenterol. 2014;20:14805–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lepage P, Hasler R, Spehlmann ME, et al. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology. 2011;141:227–36.

    Article  PubMed  Google Scholar 

  35. Chu H, Khosravi A, Kusumawardhani IP, et al. Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science. 2016;352:1116–20. How genome and microbiome interact in IBD.

    Article  CAS  PubMed  Google Scholar 

  36. Knights D, Silverberg MS, Weersma RK, et al. Complex host genetics influence the microbiome in inflammatory bowel disease. Genome Med. 2014;6:107.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tjonneland A, Overvad K, Bergmann MM, et al. Linoleic acid, a dietary n-6 polyunsaturated fatty acid, and the aetiology of ulcerative colitis: a nested case-control study within a European prospective cohort study. Gut. 2009;58:1606–11.

    Article  CAS  PubMed  Google Scholar 

  38. Ananthakrishnan AN, Khalili H, Konijeti GG, et al. Long-term intake of dietary fat and risk of ulcerative colitis and Crohn’s disease. Gut. 2014;63:776–84.

    Article  CAS  PubMed  Google Scholar 

  39. Forbes A, Kalantzis T. Crohn’s disease: the cold chain hypothesis. Int J Colorectal Dis. 2006;21:399–401.

    Article  PubMed  Google Scholar 

  40. Hou JK, Abraham B, El-Serag H. Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature. Am J Gastroenterol. 2011;106:563–73.

    Article  CAS  PubMed  Google Scholar 

  41. Holmes EA, Xiang F, Lucas RM. Variation in incidence of pediatric Crohn’s disease in relation to latitude and ambient ultraviolet radiation. Inflamm Bowel Dis. 2015;21:809–17.

    Article  PubMed  Google Scholar 

  42. Chassaing B, Koren O, Goodrich JK, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2015;519:92–6. Nice illustration of diet-microbiota interactions impacting on gastrointestinal and systemic health and disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shanahan F, Bernstein CN. The evolving epidemiology of inflammatory bowel disease. Curr Opin Gastroenterol. 2009;25:301–5.

    Article  PubMed  Google Scholar 

  44. Broadhurst MJ, Ardeshir A, Kanwar B, et al. Therapeutic helminth infection of macaques with idiopathic chronic diarrhea alters the inflammatory signature and mucosal microbiota of the colon. PLoS Pathog. 2012;8:e1003000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee SC, Tang MS, Lim YAL, et al. Helminth colonization is associated with increased diversity of the gut microbiota. PLoS Negl Trop Dis. 2014;8:e2880.

    Article  PubMed  PubMed Central  Google Scholar 

  46. O’Toole PW, Claesson MJ. Gut microbiota: changes throughout the lifespan from infancy to elderly. Int Dairy J. 2010;20:281–91.

    Article  Google Scholar 

  47. Barreiro-de Acosta M, Alvarez Castro A, Souto R, et al. Emigration to western industrialized countries: a risk factor for developing inflammatory bowel disease. J Crohn’s Colitis. 2011;5:566–9.

    Article  CAS  Google Scholar 

  48. Brant SR. Update on the heritability of inflammatory bowel disease: the importance of twin studies. Inflamm Bowel Dis. 2011;17:1–5.

    Article  PubMed  Google Scholar 

  49. Victor 3rd DW, Quigley EM. Microbial therapy in liver disease: probiotics probe the microbiome-gut-liver-brain axis. Gastroenterology. 2014;147:1216–8.

    Article  PubMed  Google Scholar 

  50. Quigley EM, Monsour HP. The gut microbiota and the liver: implications for clinical practice. Expert Rev Gastroenterol Hepatol. 2013;7:723–32. An overview of the role of the microbiota in liver disease and its complications.

    Article  CAS  PubMed  Google Scholar 

  51. Quigley EM, Stanton C, Murphy EF. The gut microbiota and the liver. Pathophysiological and clinical implications. J Hepatol. 2013;58:1020–7. A second overview of the role of the microbiota in liver disease and its complications.

    Article  PubMed  Google Scholar 

  52. Purohit V, Bode JC, Bode, et al. Alcohol, intestinal bacterial growth, intestinal permeability to endotoxin, and medical consequences: summary of a symposium. Alcohol. 2008;42:349–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schaffert CS, Duryee MJ, Hunter CD, et al. Alcohol metabolites and lipopolysaccharide: roles in the development and/or progression of alcoholic liver disease. World J Gastroenterol. 2009;15:1209–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nanji AA, Khettry U, Sadrzadeh SM. Lactobacillus feeding reduces endotoxemia and severity of experimental alcoholic liver (disease). Proc Soc Exp Biol Med. 1994;205:243–7.

    Article  CAS  PubMed  Google Scholar 

  55. Lata J, Novotny I, Pribramska V, et al. The effect of probiotics on gut flora, level of endotoxin and Child-Pugh score in cirrhotic patients: results of a double-blind randomized study. Eur J Gastroenterol Hepatol. 2007;19:1111–3.

    Article  PubMed  Google Scholar 

  56. Forsyth CB, Farhadi A, Jakate SM, et al. Lactobacillus GG treatment ameliorates alcohol-induced intestinal oxidative stress, gut leakiness, and liver injury in a rat model of alcoholic steatohepatitis. Alcohol. 2009;43:163–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Loguerico C, Federico A, Tuccillo C, et al. Beneficial effects of a probiotic VSL#3 on parameters of liver dysfunction in chronic liver diseases. J Clin Gastroenterol. 2005;39:540–3.

    Article  Google Scholar 

  58. Dhiman RK, Rana B, Agrawal S, et al. Probiotic VSL#3 reduces liver disease severity and hospitalization in patients with cirrhosis: a randomized, controlled trial. Gastroenterology. 2014;147:1327–37. A high-quality study of a microbiota-directed intervention in cirrhosis.

    Article  CAS  PubMed  Google Scholar 

  59. Ghoshal UC, Shukla R, Ghoshal U. The gut microbiota and irritable bowel syndrome: friend or foe? Int J Inflammation. 2012;2012:151085.

    Article  Google Scholar 

  60. Spiller R, Lam C. An update on post-infectious irritable bowel syndrome: role of genetics, immune activation, serotonin and altered microbiome. J Neurogastroenterol Motil. 2012;18:258–68.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Quigley EMM. A 51-year old with IBS: test or treat for bacterial overgrowth? Clin Gastroenterol Hepatol. 2007;5:114–1143.

    Article  Google Scholar 

  62. Ghoshal UC, Srivastava D. Irritable bowel syndrome and small intestinal bacterial overgrowth: meaningful association or unnecessary hype. World J Gastroenterol. 2014;20:2482–91.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Codling C, O’Mahony L, Shanahan F, et al. A molecular analysis of fecal and mucosal bacterial communities in irritable bowel syndrome. Dig Dis Sci. 2010;55:392–7.

    Article  PubMed  Google Scholar 

  64. Jeffery IB, O’Toole PW, Ohman L, et al. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut. 2012;61:997–1006.

    Article  PubMed  Google Scholar 

  65. Quigley EM, Spiller RC. Constipation and the microbiome: lumen versus mucosa! Gastroenterology. 2016;150:300–3.

    Article  PubMed  Google Scholar 

  66. Parthasarathy G, Chen J, Chen X, et al. Relationship between microbiota of the colonic mucosa vs feces and symptoms, colonic transit, and methane production in female patients with chronic constipation. Gastroenterology. 2016;150:367–79. Perhaps the most comprehensive study of the microbiota in a functional gastrointestinal disorder which emphasizes the differences between fecal and mucosal communities and how they relate to symptoms and physiological parameters.

    Article  PubMed  Google Scholar 

  67. Dugas L, Fuller M, Gilbert J, et al. The obese gut microbiome across the epidemiologic transition. Emerg Themes Epidemiol. 2016;13:2.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.

    Article  PubMed  Google Scholar 

  69. Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341:1241214. A very clever experiment that demonstrated the ability of “obese” microbiome to transfer an obese phenotype.

    Article  PubMed  Google Scholar 

  70. Ley RE, Turnbaugh PJ, Klein S, et al. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–3.

    Article  CAS  PubMed  Google Scholar 

  71. Ferrer M, Ruiz A, Lanza F, et al. Microbiota from the distal guts of lean and obese adolescents exhibit partial functional redundancy besides clear differences in community structure. Environ Microbiol. 2013;15:211–26.

    Article  CAS  PubMed  Google Scholar 

  72. Feng Q, Liang S, Jia H, et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun. 2015;6:6528.

    Article  CAS  PubMed  Google Scholar 

  73. Leung A, Tsoi H, Yu J. Fusobacterium and Escherichia: models of colorectal cancer driven by microbiota and the utility of microbiota incolorectal cancer screening. Expert Rev Gastroenterol Hepatol. 2015;9:651–7. Nice review of interactions between the microbiota and the host in colorectal cancer pathogenesis.

    Article  CAS  PubMed  Google Scholar 

  74. Kostic AD, Gevers D, Pedamallu CS, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22:292–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Scheperjans F, Aho V, Pereira PA, et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord. 2015;30:350–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eamonn M. M. Quigley.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Large Intestine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, S., Quigley, E.M.M. Progress in Our Understanding of the Gut Microbiome: Implications for the Clinician. Curr Gastroenterol Rep 18, 49 (2016). https://doi.org/10.1007/s11894-016-0524-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11894-016-0524-y

Keywords

Navigation