Skip to main content
Log in

Disentangling the Role of Melatonin and its Receptor MTNR1B in Type 2 Diabetes: Still a Long Way to Go?

  • Genetics (AP Morris, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Type 2 diabetes (T2D) is a complex genetic metabolic disorder. T2D heritability has been estimated around 40–70%. In the last decade, exponential progress has been made in identifying T2D genetic determinants, through genome-wide association studies (GWAS). Among single-nucleotide polymorphisms mostly associated with T2D risk, rs10830963 is located in the MTNR1B gene, encoding one of the two receptors of melatonin, a neurohormone involved in circadian rhythms. Subsequent studies aiming to disentangle the role of MTNR1B in T2D pathophysiology led to controversies. In this review, we will tackle them and will try to give some directions to get a better view of MTNR1B contribution to T2D pathophysiology.

Recent Findings

Recent studies either based on genetic/genomic analyses, clinical/epidemiology data, functional analyses at rs10830963 locus, insulin secretion assays in response to melatonin (involving or not MTNR1B) or animal model analyses have led to strong controversies at each level of interpretation.

Summary

We discuss possible caveats in these studies and present ways to go beyond these issues, towards a better understanding of T2D molecular mechanisms, keeping in mind that melatonin is a versatile hormone and regulates many functions via its primary role in the body clock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Association AD. 2. Classification and diagnosis of diabetes. Diabetes Care. 2017;40:S11–24.

    Article  Google Scholar 

  2. Vftter K. Diabetes mellitus. WHO technical report series 727. 113 Seiten. World Health Organization, Geneva 1985. Preis: 9.00 Sw. fr. Food Nahr. 1986;30:700.

    Article  Google Scholar 

  3. Bonnefond A, Froguel P. Rare and common genetic events in type 2 diabetes: what should biologists know? Cell Metab. 2015;21:357–68.

    Article  CAS  PubMed  Google Scholar 

  4. Wheeler E, Marenne G, Barroso I. Genetic aetiology of glycaemic traits—approaches and insights. Hum Mol Genet. [Internet]. [cited 2017 Jul 25]; Available from: https://academic.oup.com/hmg/article/doi/10.1093/hmg/ddx293/4016580/Genetic-aetiology-of-glycaemic-traits-approaches

  5. Mulder H. Melatonin signalling and type 2 diabetes risk: too little, too much or just right? Diabetologia. 2017;60:826-829.

  6. Bonnefond A, Froguel P. The case for too little melatonin signalling in increased diabetes risk. Diabetologia. 2017;60:823-825.

  7. Bonnefond A, Karamitri A, Jockers R, Froguel P. The difficult journey from genome-wide association studies to pathophysiology: the melatonin receptor 1B (MT2) paradigm. Cell Metab. 2016;24:345–7.

    Article  CAS  PubMed  Google Scholar 

  8. • Bouatia-Naji N, Bonnefond A, Cavalcanti-Proença C, Sparsø T, Holmkvist J, Marchand M, et al. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat Genet. 2009;41:89–94. Among the three publications that primarily identify the effect of MTNR1B locus on the variation of fasting glucose or insulin-secretion-related traits and on type 2 diabetes risk, through hypothesis-free genome-wide association studies.

    Article  CAS  PubMed  Google Scholar 

  9. • Prokopenko I, Langenberg C, Florez JC, Saxena R, Soranzo N, Thorleifsson G, et al. Variants in MTNR1B influence fasting glucose levels. Nat Genet. 2009;41:77–81. Among the three publications that primarily identify the effect of MTNR1B locus on the variation of fasting glucose or insulin-secretion-related traits and on type 2 diabetes risk, through hypothesis-free genome-wide association studies.

    Article  CAS  PubMed  Google Scholar 

  10. Sparsø T, Bonnefond A, Andersson E, Bouatia-Naji N, Holmkvist J, Wegner L, et al. G-allele of intronic rs10830963 in MTNR1B confers increased risk of impaired fasting glycemia and type 2 diabetes through an impaired glucose-stimulated insulin release: studies involving 19,605 Europeans. Diabetes. 2009;58:1450–6.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rönn T, Wen J, Yang Z, Lu B, Du Y, Groop L, et al. A common variant in MTNR1B, encoding melatonin receptor 1B, is associated with type 2 diabetes and fasting plasma glucose in Han Chinese individuals. Diabetologia. 2009;52:830–3.

    Article  PubMed  Google Scholar 

  12. Chambers JC, Zhang W, Zabaneh D, Sehmi J, Jain P, McCarthy MI, et al. Common genetic variation near melatonin receptor MTNR1B contributes to raised plasma glucose and increased risk of type 2 diabetes among Indian Asians and European Caucasians. Diabetes. 2009;58:2703–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu C, Wu Y, Li H, Qi Q, Langenberg C, Loos RJF, et al. MTNR1B rs10830963 is associated with fasting plasma glucose, HbA1C and impaired beta-cell function in Chinese Hans from shanghai. BMC Med Genet. 2010;11:59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Takeuchi F, Katsuya T, Chakrewarthy S, Yamamoto K, Fujioka A, Serizawa M, et al. Common variants at the GCK, GCKR, G6PC2-ABCB11 and MTNR1B loci are associated with fasting glucose in two Asian populations. Diabetologia. 2010;53:299–308.

    Article  CAS  PubMed  Google Scholar 

  15. Kan MY, Zhou DZ, Zhang D, Zhang Z, Chen Z, Yang YF, et al. Two susceptible diabetogenic variants near/in MTNR1B are associated with fasting plasma glucose in a Han Chinese cohort. Diabet Med J Br Diabet Assoc. 2010;27:598–602.

    Article  CAS  Google Scholar 

  16. Ramos E, Chen G, Shriner D, Doumatey A, Gerry NP, Herbert A, et al. Replication of genome-wide association studies (GWAS) loci for fasting plasma glucose in African-Americans. Diabetologia. 2011;54:783–8.

    Article  CAS  PubMed  Google Scholar 

  17. Kim YJ, Go MJ, Hu C, Hong CB, Kim YK, Lee JY, et al. Large-scale genome-wide association studies in East Asians identify new genetic loci influencing metabolic traits. Nat Genet. 2011;43:990–5.

    Article  CAS  PubMed  Google Scholar 

  18. Rasmussen-Torvik LJ, Guo X, Bowden DW, Bertoni AG, Sale MM, Yao J, et al. Fasting glucose GWAS candidate region analysis across ethnic groups in the Multiethnic Study of Atherosclerosis (MESA). Genet Epidemiol. 2012;36:384–91.

    Article  PubMed  PubMed Central  Google Scholar 

  19. • Lyssenko V, Nagorny CLF, Erdos MR, Wierup N, Jonsson A, Spégel P, et al. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat Genet. 2009;41:82–8. Among the three publications that primarily identify the effect of MTNR1B locus on the variation of fasting glucose or insulin-secretion-related traits and on type 2 diabetes risk, through hypothesis-free genome-wide association studies.

    Article  CAS  PubMed  Google Scholar 

  20. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42:105–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010;42:579–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ling Y, Li X, Gu Q, Chen H, Lu D, Gao XA. Common polymorphism rs3781637 in MTNR1B is associated with type 2 diabetes and lipids levels in Han Chinese individuals. Cardiovasc Diabetol. 2011;10:27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ohshige T, Iwata M, Omori S, Tanaka Y, Hirose H, Kaku K, et al. Association of new loci identified in European genome-wide association studies with susceptibility to type 2 diabetes in the Japanese. PLoS One. 2011;6:e26911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao Q, Xiao J, He J, Zhang X, Hong J, Kong X, et al. Cross-sectional and longitudinal replication analyses of genome-wide association loci of type 2 diabetes in Han Chinese. PLoS One. 2014;9:e91790.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Prokopenko I, Poon W, Mägi R, Prasad BR, Salehi SA, Almgren P, et al. A central role for GRB10 in regulation of islet function in man. PLoS Genet. 2014;10:e1004235.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wood AR, Jonsson A, Jackson AU, Wang N, van Leewen N, Palmer ND, et al. A genome-wide association study of IVGTT-based measures of first-phase insulin secretion refines the underlying physiology of type 2 diabetes variants. Diabetes. 2017;66:2296–309.

    Article  PubMed  Google Scholar 

  27. Pandi-Perumal SR, Srinivasan V, Maestroni GJM, Cardinali DP, Poeggeler B, Hardeland R. Melatonin: nature’s most versatile biological signal? FEBS J. 2006;273:2813–38.

    Article  CAS  PubMed  Google Scholar 

  28. Clarke T, Black L, Stussman B, Barnes P, Nahin R. Use of complementary health approaches among children aged 4–17 years in the United States: National Health Interview Survey, 2007–2012. National Health Statistics Reports; No 78. Natl. Cent. Health Stat.—CDC. 2015.

  29. Clarke T, Black L, Stussman B, Barnes P, Nahin R. Trends in the use of complementary health approaches among adults: United States, 2002–2012. National Health Statistics Reports; No 79. Natl Cent Health Stat.—CDC. 2015.

  30. Sack RL, Brandes RW, Kendall AR, Lewy AJ. Entrainment of free-running circadian rhythms by melatonin in blind people. N Engl J Med. 2000;343:1070–7.

    Article  CAS  PubMed  Google Scholar 

  31. Yu H, Dickson EJ, Jung S-R, Koh D-S, Hille B. High membrane permeability for melatonin. J Gen Physiol. 2016;147:63–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim HJ, Kim HJ, Bae M-K, Kim Y-D. Suppression of osteoclastogenesis by melatonin: a melatonin receptor-independent action. Int J Mol Sci. [Internet]. 2017;18. Available from: http://www.mdpi.com/1422-0067/18/6/1142

  33. Emet M, Ozcan H, Ozel L, Yayla M, Halici Z, Hacimuftuoglu A. A review of melatonin, its receptors and drugs. Eurasian. J Med. 2016;48:135–41.

    Google Scholar 

  34. Pandi-Perumal SR, Trakht I, Srinivasan V, Spence DW, Maestroni GJM, Zisapel N, et al. Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways. Prog Neurobiol. 2008;85:335–53.

    Article  CAS  PubMed  Google Scholar 

  35. Calvo JR, González-Yanes C, Maldonado MD. The role of melatonin in the cells of the innate immunity: a review. J Pineal Res. 2013;55:103–20.

    Article  CAS  PubMed  Google Scholar 

  36. Feng NY, Bass AH. “Singing” fish rely on circadian rhythm and melatonin for the timing of nocturnal courtship vocalization. Curr Biol. 2016;26:2681–9.

    Article  CAS  PubMed  Google Scholar 

  37. Tuomi T, Nagorny CLF, Singh P, Bennet H, Yu Q, Alenkvist I, et al. Increased melatonin signaling is a risk factor for type 2 diabetes. Cell Metab. 2016;23:1067–77.

    Article  CAS  PubMed  Google Scholar 

  38. Bazwinsky-Wutschke I, Bieseke L, Mühlbauer E, Peschke E. Influence of melatonin receptor signalling on parameters involved in blood glucose regulation. J Pineal Res. 2014;56:82–96.

    Article  CAS  PubMed  Google Scholar 

  39. Costes S, Boss M, Thomas AP, Matveyenko AV. Activation of melatonin signaling promotes β-cell survival and function. Mol Endocrinol. 2015;29:682–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thomas AP, Hoang J, Vongbunyong K, Nguyen A, Rakshit K, Matveyenko AV. Administration of melatonin and metformin prevents deleterious effects of circadian disruption and obesity in male rats. Endocrinology. 2016;157:4720–31.

    Article  CAS  PubMed  Google Scholar 

  41. Zhou J, Zhang J, Luo X, Li M, Yue Y, Laudon M, et al. Neu-P11, a novel MT1/MT2 agonist, reverses diabetes by suppressing the hypothalamic-pituitary-adrenal axis in rats. Eur J Pharmacol. [Internet]. 2017 [cited 2017 Jul 14]; Available from: http://linkinghub.elsevier.com/retrieve/pii/S0014299917304466

  42. Rubio-Sastre P, Scheer FAJL, Gómez-Abellán P, Madrid JA, Garaulet M. Acute melatonin administration in humans impairs glucose tolerance in both the morning and evening. Sleep. 2014;37:1715–9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. McMullan CJ, Schernhammer ES, Rimm EB, FB H, Forman JP. Melatonin secretion and the incidence of type 2 diabetes. JAMA. J Am Med Assoc. 2013;309:1388–96.

    Article  CAS  Google Scholar 

  44. Scott RA, Scott LJ, Mägi R, Marullo L, Gaulton KJ, Kaakinen M, et al. An expanded genome-wide association study of type 2 diabetes in Europeans. Diabetes. [Internet]. 2017;db161253. Available from: http://diabetes.diabetesjournals.org/content/early/2017/05/25/db16-1253.long

  45. Franks PW, McCarthy MI. Exposing the exposures responsible for type 2 diabetes and obesity. Science. 2016;354:69–73.

    Article  CAS  PubMed  Google Scholar 

  46. Edwards SL, Beesley J, French JD, Dunning AM. Beyond GWASs: illuminating the dark road from association to function. Am J Hum Genet. 2013;93:779–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012;485:376–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fadista J, Vikman P, Laakso EO, Mollet IG, Esguerra JL, Taneera J, et al. Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proc Natl Acad Sci. 2014;111:13924–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. van de Bunt M, Manning Fox JE, Dai X, Barrett A, Grey C, Li L, et al. Transcript expression data from human islets links regulatory signals from genome-wide association studies for type 2 diabetes and glycemic traits to their downstream effectors. PLoS Genet. 2015;11:e1005694.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bonnefond A, Clément N, Fawcett K, Yengo L, Vaillant E, Guillaume J-L, et al. Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat Genet. 2012;44:297–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Segerstolpe Å, Palasantza A, Eliasson P, Andersson E-M, Andréasson A-C, Sun X, et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab. 2016;24:593–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Thomsen SK, Ceroni A, van de Bunt M, Burrows C, Barrett A, Scharfmann R, et al. Systematic functional characterization of candidate causal genes for type 2 diabetes risk variants. Diabetes. 2016;65:3805–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Williams EG, Wu Y, Jha P, Dubuis S, Blattmann P, Argmann CA, et al. Systems proteomics of liver mitochondria function. Science. 2016;352:aad0189.

    Article  PubMed  Google Scholar 

  54. Battle A, Khan Z, Wang SH, Mitrano A, Ford MJ, Pritchard JK, et al. Impact of regulatory variation from RNA to protein. Science. 2015;347:664–7.

    Article  CAS  PubMed  Google Scholar 

  55. Shu L, Matveyenko AV, Kerr-Conte J, Cho J-H, McIntosh CHS, Maedler K. Decreased TCF7L2 protein levels in type 2 diabetes mellitus correlate with downregulation of GIP- and GLP-1 receptors and impaired beta-cell function. Hum Mol Genet. 2009;18:2388–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gaulton KJ, Ferreira T, Lee Y, Raimondo A, Mägi R, Reschen ME, et al. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat Genet. 2015;47:1415–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pasquali L, Gaulton KJ, Rodríguez-Seguí SA, Mularoni L, Miguel-Escalada I, Akerman I, et al. Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nat Genet. 2014;46:136–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lane JM, Chang A-M, Bjonnes AC, Aeschbach D, Anderson C, Cade BE, et al. Impact of common diabetes risk variant in MTNR1B on sleep, circadian, and melatonin physiology. Diabetes. 2016;65:1741–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bansal V, Gassenhuber J, Phillips T, Oliviera G, Villarasa N, Tisch R, et al. Targeted sequencing of genes associated with type 2 diabetes in 6800 individuals. Am Soc Hum Genet—Meet Abstr. 2014;760S. Available from: http://www.ashg.org/2014meeting/abstracts/fulltext/f140122299.htm

Download references

Acknowledgements

Work related to melatonin in the authors’ laboratory is supported by the EASD/Janssen (‘Rising Star’, awarded to AB) and by the Agence Nationale de la Recherche (ANR-2011-BSV1-012-01 ‘MLT2D’ and ANR-2011-META “MELA-BETES”, awarded to AB and PF). AB is supported by Inserm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amélie Bonnefond.

Ethics declarations

Conflict of Interest

Amélie Bonnefond and Philippe Froguel declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Genetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonnefond, A., Froguel, P. Disentangling the Role of Melatonin and its Receptor MTNR1B in Type 2 Diabetes: Still a Long Way to Go?. Curr Diab Rep 17, 122 (2017). https://doi.org/10.1007/s11892-017-0957-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-017-0957-1

Keywords

Navigation