Skip to main content

Advertisement

Log in

Targeting Tie2 for Treatment of Diabetic Retinopathy and Diabetic Macular Edema

  • Microvascular Complications—Retinopathy (JK Sun and PS Silva, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Tie2 is a tyrosine kinase receptor located predominantly on vascular endothelial cells that plays a central role in vascular stability. Angiopoietin-1 (Angpt1), produced by perivascular cells, binds, clusters, and activates Tie2, leading to Tie2 autophosphorylation and downstream signaling. Activated Tie2 increases endothelial cell survival, adhesion, and cell junction integrity, thereby stabilizing the vasculature. Angiopoietin-2 (Angpt2) and vascular endothelial-protein tyrosine phosphatase (VE-PTP) are negative regulators increased by hypoxia; they inactivate Tie2, destabilizing the vasculature and increasing responsiveness to vascular endothelial growth factor (VEGF) and other inflammatory cytokines that stimulate vascular leakage and neovascularization. AKB-9778 is a small-molecule antagonist of VE-PTP which increases phosphorylation of Tie2 even in the presence of high Angpt2 levels. In preclinical studies, AKB-9778 reduced VEGF-induced leakage and ocular neovascularization (NV) and showed additive benefit when combined with VEGF suppression. In two clinical trials in diabetic macular edema (DME) patients, subcutaneous injections of AKB-9778 were safe and provided added benefit to VEGF suppression. Preliminary data suggest that AKB-9778 monotherapy improves diabetic retinopathy. These data suggest that Tie2 activation may be a valuable strategy to treat or prevent diabetic retinopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of Importance •• Of major importance

  1. Klein R, Klein B. Vision disorders in diabetes. In: Group NDD, editor. Diabetes in America. 2nd ed. Washington: National Institutes of Health; 1995.

    Google Scholar 

  2. Yau JW, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35:556–64.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Campochiaro PA. Molecular pathogenesis of retinal and choroidal vascular diseases. Prog Retin Eye Res. 2015;49:67–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Campochiaro PA, Aiello LP, Rosenfeld PJ. Anti-vascular endothelial growth factor agents in the treatment of retinal disease. From bench to bedside. Ophthalmology 2016; In press.

  5. Dumont DJ, Yamaguchi TP, Conlon RA, et al. tek, a novel tyrosine kinase gen located on mouse chromosome 4, is expressed in endothelial cells and their presumptive precursors. Oncogene. 1992;7:1471–80.

    CAS  PubMed  Google Scholar 

  6. Partanen J, Armstrong E, Makela TP, et al. A novel endothelial cell surface receptor tyrosine kinase with extracellular epidermal growth factor homology domains. Mol Cell Biol. 1992;12:1698–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dumont DJ, Gradwohl G, Fong G-H, et al. Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev. 1994;8:1897–909.

    Article  CAS  PubMed  Google Scholar 

  8. Sato TN, Tozawa Y, Deutsch U, et al. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature. 1995;376:70–4.

    Article  CAS  PubMed  Google Scholar 

  9. Davis S, Aldrich TH, Jones P, et al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell. 1996;87:1161–9.

    Article  CAS  PubMed  Google Scholar 

  10. Procopio WN, Pelavin PI, Lee WMF, et al. Angiopoeitin-1 and -2 coiled coil domains mediate distinct homo-oliomerization patterns, but fibrinogen-like domains mediate ligand activity. J Biol Chem. 1999;274:30196–201.

    Article  CAS  PubMed  Google Scholar 

  11. Suri C, Jones PF, Patan S, et al. Requisite role of Angiopoietin-1, a ligand for the Tie2 receptor, during embryonic angiogenesis. Cell. 1996;87:1171–80.

    Article  CAS  PubMed  Google Scholar 

  12. Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science. 1997;277:55–60.

    Article  CAS  PubMed  Google Scholar 

  13. Gale NW, Thurston G, Hackett SF, et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by angiopoietin-1. Devel Cell. 2002;3:411–23.

    Article  CAS  Google Scholar 

  14. Valenzuela DM, Griffiths JA, Rojas J, et al. Angiopoietins 3 and 4: diverging gene counterparts in mice and humans. Proc Natl Acad Sci U S A. 1999;96:1904–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fachinger G, Deutsch U, Risau W. Functional interaction of vascular endothelial-protein-tyrosine phosphatase with the angiopoietin receptor Tie-2. Oncogene. 1999;18:5948–3.

    Article  CAS  PubMed  Google Scholar 

  16. Krueger NX, Streuli M, Saito H. Structural diversity and evolution of human receptor-like protein tyrosine phosphatases. EMBO J. 1990;9:3241–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wong AL, Haroon ZA, Werner S, et al. Tie2 expression and phosphorylation in angiogenic and quiescent adult tissues. Circ Res. 1997;81:567–74.

    Article  CAS  PubMed  Google Scholar 

  18. Mandriota SJ, Pepper MS. Regulation of angiopoietin-2 mRNA levels in bovine microvascular endothelial cells by cytokines and hypoxia. Circ Res. 1998;83:852–9.

    Article  CAS  PubMed  Google Scholar 

  19. Oh H, Takagi H, Suzuma K, et al. Hypoxia and vascular endothelial growth factor selectively upregulate angiopoietin-2 in bovine microvascular endothelial cells. J Biol Chem. 1999;274:15732–9.

    Article  CAS  PubMed  Google Scholar 

  20. Yacyshyn OK, Lai PFH, Forse K, et al. Tyrosine phosphatase beta regulates angiopoietin-Tie2 signaling in human endothelial cells. Angiogenesis. 2009;12:25–33.

    Article  CAS  PubMed  Google Scholar 

  21. •• Shen J, Frye M, Lee BL, et al. Targeting VE-PTP activates TIE2 and stabilizes the ocular vasculature. J Clin Invest. 2014;124:4564–76. This study demonstrates the critical role of VE-PTP in regulation of Tie2 and the potential of using VE-PTP inhibitors to activate Tie2 and reduce vascular responsiveness to VEGF.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kontos CD, Stauffer TP, Yang W-P, et al. Tyrosine 1101 of Tie2 is the major site of association of p85 and is required for activation of phosphatidylinositol 3-kinase and Akt. Mol Cell Biol. 1998;11:4131–40.

    Article  Google Scholar 

  23. Papapetropoulos A, Garcia-Cardena G, Dengler TJ, et al. Direct actions of angiopoietin-1 on human endothelium: evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. Lab Invest. 1999;79:213–23.

    CAS  PubMed  Google Scholar 

  24. Kim I, Kim HG, So J-N, et al. Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Circ Res. 2000;86:24–9.

    Article  CAS  PubMed  Google Scholar 

  25. Kim I, Kim JH, Moon SO, et al. Angiopoietin-2 at high concentration can enhance endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Oncogene. 2000;19:4549–52.

    Article  CAS  PubMed  Google Scholar 

  26. Yuan HT, Khankin EV, Karumanchi SA, et al. Angiopoietin 2 is a partial agonist/antagonist of Tie2 signaling in the endothelium. Molec Cell Biol. 2009;29:2011–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tai L-K, Zheng Q, Pan S, et al. Flow activates ERK1/2 and endothelial nitric oxide synthase via a pathway involving PECAM1, SHP2, and Tie2. J Biol Chem. 2005;280:29620–4.

    Article  CAS  PubMed  Google Scholar 

  28. Szmitko PE, Wang CH, Weisel RD, et al. New markers of inflammation and endothelial cell activation: part I. Circulation. 2003;108:1917–23.

    Article  PubMed  Google Scholar 

  29. Fukuhara S, Sako K, Minami T, et al. Differential function of Tie2 at cell-cell contacts and cell-substratum contacts regulated by angiopoietin-1. Nat Cell Biol. 2008;10:513–26.

    Article  CAS  PubMed  Google Scholar 

  30. Saharinen P, Eklund L, Miettinen J, et al. Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell-cell and cell-matrix contacts. Nat Cell Biol. 2008;10:527–37.

    Article  CAS  PubMed  Google Scholar 

  31. Gavard J, Patel V, Gutkind JS. Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia. Devel Cell. 2008;14:25–36.

    Article  CAS  Google Scholar 

  32. Wittchen ES, Worthylake RA, Kelly P, et al. Rap1 GTPase inhibits leukocyte transmigration by promoting endothelial barrier function. J Biol Chem. 2005;280:11675–82.

    Article  CAS  PubMed  Google Scholar 

  33. Mammoto T, Parikh SM, Mammoto A, et al. Angiopoietin-1 requires p190 rhoGAP to protect against vascular leakage in vivo. J Biol Chem. 2007;282:23910–8.

    Article  CAS  PubMed  Google Scholar 

  34. David S, Ghosh CC, Mukherjee A, et al. Angiopoietin-1 requires IQ domain GTPase-activating protein 1 to activate Rac1 and promote endothelial barrier defense. Arterioscler Thromb Vasc Biol. 2011;31:2643–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. •• Frye M, Dierkes M, Kuppers V, et al. Interfering with VE-PTP stabilizes endothelial junctions in vivo via Tie-2 in the absence of VE-cadherin. J Exp Med. 2015;212:2267–87. This study demonstrates that suppression of VE-PTP stabilizes endothelial cell junctions independent of any effects on VE-cadherin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Suri C, McClain J, Thurston G, et al. Increased vascularization in mice overexpressing angiopoietin-1. Science. 1998;282:468–71.

    Article  CAS  PubMed  Google Scholar 

  37. Thurston G, Suri C, Smith K, et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science. 1999;286:2511–5.

    Article  CAS  PubMed  Google Scholar 

  38. Thurston G, Rudge JS, Ioffe E, et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med. 2000;6:460–3.

    Article  CAS  PubMed  Google Scholar 

  39. Hackett SF, Ozaki H, Strauss RW, et al. Angiopoietin 2 expression in the retina: upregulation during physiologic and pathologic neovascularization. J Cell Physiol. 2000;184:275–84.

    Article  CAS  PubMed  Google Scholar 

  40. Hackett SF, Wiegand SJ, Yancopoulos G, et al. Angiopoietin-2 plays an important role in retinal angiogenesis. J Cell Physiol. 2002;192:182–7.

    Article  CAS  PubMed  Google Scholar 

  41. Okamoto N, Tobe T, Hackett SF, et al. Transgenic mice with increased expression of vascular endothelial growth factor in the retina: a new model of intraretinal and subretinal neovascularization. Am J Pathol. 1997;151:281–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ohno-Matsui K, Hirose A, Yamamoto S, et al. Inducible expression of vascular endothelial growth factor in photoreceptors of adult mice causes severe proliferative retinopathy and retinal detachment. Am J Pathol. 2002;160:711–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Oshima Y, Deering T, Oshima S, et al. Angiopoietin-2 enhances retinal vessel sensitivity to vascular endothelial growth factor. J Cell Physiol. 2004;199:412–7.

    Article  CAS  PubMed  Google Scholar 

  44. Oshima Y, Oshima S, Nambu H, et al. Different effects of angiopoietin 2 in different vascular beds in the eye; new vessels are most sensitive. FASEB J. 2005;19:963–5.

    CAS  PubMed  Google Scholar 

  45. Hammes HP, Wagner LJ, Feng Y, et al. Angiopoietin-2 causes pericyte dropout in the normal retina: evidence for involvement in diabetic retinopathy. Diabetes. 2004;53:1104–10.

    Article  CAS  PubMed  Google Scholar 

  46. Uemura A, Ogawa M, Hirashima M, et al. Recombinant angiopoietin-1 restores higher-order architecture of growing blood vessels in mice in the absence of mural cells. J Clin Invest. 2002;110:1619–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Enge M, Bjarnegard M, Gerhardt H, et al. Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J. 2002;21:4307–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nambu H, Nambu R, Oshima Y, et al. Angiopoietin 1 inhibits ocular neovascularization and breakdown of the blood-retinal barrier. Gene Ther. 2004;11:865–73.

    Article  CAS  PubMed  Google Scholar 

  49. Nambu H, Umeda N, Kachi S, et al. Angiopoietin 1 prevents retinal detachment in an aggressive model of proliferative retinopathy, but has no effect on established neovascularization. J Cell Physiol. 2005;204:227–35.

    Article  CAS  PubMed  Google Scholar 

  50. Joussen AM, Poulaki V, Tsujikawa A, et al. Suppression of diabetic retinopathy with angiopoietin-1. Am J Pathol. 2002;160:1683–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Campochiaro PA, Hafiz G, Mir TA, et al. Pro-permeability factors in diabetic macular edema; the diabetic macular edema treated with Ozurdex study. Am J Ophthalmol. 2016. doi:10.1016/j.ajo.2016.04.017.

    Google Scholar 

  52. Foroogbian F, Kertes PJ, Eng KT, et al. Alterations in the intraocular cytokine milieu after intravitreal bevacizumab. Invest Ophthalmol Vis Sci. 2010;51:2388–92.

    Article  Google Scholar 

  53. Loukovaara S, Robciuc A, Holopainen JM, et al. Ang-2 upregulation correlates with increased levels of MMP-9, VEGF, EPO and TGFbeta1 in diabetic eyes undergoing vitrectomy. Acta Ophthalmol. 2013;91:531–9.

    Article  CAS  PubMed  Google Scholar 

  54. Li JK, Wei F, Jin XH, et al. Changes in vitreous VEGF, bFGF and fibrosis in proliferative diabetic retinopathy after intravitreal bevacizumab. Int J Ophthalmol. 2015;8:1202–6.

    PubMed  PubMed Central  Google Scholar 

  55. Yoshimura T, Sonoda KH, Sugahara M, et al. Comprehensive analysis of inflammatory immune mediators in vitreoretinal diseases. PLoS One. 2009;4:e8158.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kinnnen K, Puustjarvi T, Terasvirta M, et al. Differences in retinal neovascular tissue and vitreous humour in patients with type 1 and type 2 diabetes. Br J Ophthalmol. 2009;93:1109–15.

    Article  Google Scholar 

  57. Watanabe D, Suzuma K, Suzuma I, et al. Vitreous levels of angiopoietin 2 and vascular endothelial growth factor in patients with proliferative diabetic retinopathy. Am J Ophthalmol. 2005;139:476–81.

    Article  CAS  PubMed  Google Scholar 

  58. • Campochiaro PA, Sophie R, Tolentino M, et al. Treatment of diabetic macular edema with an inhibitor of vascular endothelial-protein tyrosine phosphatase that activates Tie2. Ophthalmology. 2015;122:545–54. This study demonstrated that subcutaneous injections of AKB-9778, a small molecule competitive inhibitor of VE-PTP that activates Tie2, is safe and well tolerated in patients with diabetic macular edema (DME) and reduces edema in some, but not all patients with DME.

    Article  PubMed  Google Scholar 

  59. •• Campochiaro PA, Khanani A, Singer M, et al. Enhanced benefit in diabetic macular edema from AKB-9778 Tie2 activation combined with vascular endothelial growth factor suppression. Ophthalmology. 2016. doi:10.1016/j.ophtha.2016.04.025. This study demonstrated that the combination of subcutaneous injections of AKB-9778 and intravitreous injections of ranibizumab cause significantly greater reduction of DME than either alone. Preliminary data suggested that AKB-9778 monotherapy reduces severity of background diabetic retinopathy.

    Google Scholar 

  60. Ip MS, Domalpally A, Hopkins JJ, et al. Long-term effects of ranibizumab on diabetic retinopathy severity and progression. Arch Ophthalmol. 2012;130:1145–52.

    Article  CAS  PubMed  Google Scholar 

  61. Lee JS, Song SH, Kim JM, et al. Angiopoietin-1 prevents hypertension and target organ damage through its interaction with endothelial Tie2 receptor. Cardiovasc Res. 2008;78:572–80.

    Article  CAS  PubMed  Google Scholar 

  62. Jeansson M, Gawlik A, Anderson G, et al. Angiopoietin-1 is essential in mouse vasculature during development and in response to injury. J Clin Invest. 2011;121:2278–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee S, Kim W, Moon SO, et al. Renoprotective effect of COMP-angiopoietin-1 in db/db mice with type 2 diabetes. Nephrol Dial Transplant. 2007;22:396–408.

    Article  CAS  PubMed  Google Scholar 

  64. Shyu KG, Manor O, Magner M, et al. Direct intramuscular injection of plasmid DNA encoding angiopoietin-1 but not angiopoietin-2 augments revascularization in the rabbit hindlimb. Circulation. 1998;98:2081–1087.

    Article  CAS  PubMed  Google Scholar 

  65. Ye L, Haider HK, Jinag S, et al. Improved angiogenic response in pig heart following ischaemic injury using human skeletal myoblast simultaneously expressing VEGF-165 and angiopoietin-1. Eur J Heart Fail. 2007;9:15–22.

    Article  CAS  PubMed  Google Scholar 

  66. Chen JX, Stinnett A. Disruption of Ang-1/Tie-2 signaling contributes to the impaired myocardial vascular maturation and angiogenesis in type II diabetic mice. Arterioscler Thromb Vasc Biol. 2008;28:1606–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen JX, Stinnett A. Ang-1 gene therapy inhibits hypoxia-inducible factor-1alpha (HIF-1alpha)-prolyl-4-hydroxylase-2, stabilizes HIF-1alpha expression, and normalizes immature vasculature in db/db mice. Diabetes. 2008;57:3335–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chae JK, Kim I, Lim ST, et al. Coadministration of angiopoietin-1 and vascular endothelial growth factor enhances collateral vascularization. Arterioscler Thromb Vasc Biol. 2000;20:2573–8.

    Article  CAS  PubMed  Google Scholar 

  69. Tuo QH, Zeng H, Stinnett A, et al. Critical role of angiopoietins/Tie-2 in hyperglycemic exacerbation of myocardial infarction and impaired angiogenesis. Am J Physiol Heart Circ Physiol. 2008;294:H2547–57.

    Article  CAS  PubMed  Google Scholar 

  70. Kampfer H, Pfeilschifter J, Frank S. Expressional regulation of angiopoietin-1 and -2 and the tie-1 and -2 receptor tyrosine kinases during cutaneous wound healing: a comparative study of normal and impaired repair. Lab Invest. 2001;81:361–73.

    Article  CAS  PubMed  Google Scholar 

  71. Cho CH, Sung HK, Kim KT, et al. COMP-angiopoietin-1 promotes wound healing through enhanced angiogenesis, lymphangiogenesis, and blood flow in a diabetic mouse model. Proc Natl Acad Sci U S A. 2006;103:4946–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bitto A, Minutoli L, Galeano MR, et al. Angiopoietin-1 gene transfer improves impaired wound healing in genetically diabetic mice without increasing VEGF expression. Clin Sci (Lond). 2008;114:707–18.

    Article  CAS  Google Scholar 

  73. Kosacka J, Nowicki M, Kloting N, et al. COMP-angiopoietin-1 recovers molecular biomarkers of neuropathy and improves vascularisation in sciatic nerve of ob/ob mice. PLoS One. 2012;7:e32881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jin HR, Kim WJ, Song JS, et al. Intracavernous delivery of a designed angiopoietin-1 variant rescues erectile function by enhancing endothelial regeneration in the streptozotocin-induced diabetic mouse. Diabetes. 2011;60:969–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Anuradha S, Mohan V, Gokulakrishnan K, et al. Angiopoietin-2 levels in glucose intolerance, hypertension, and metabolic syndrome in Asian Indians (Chennai Urban Rural Epidemiology Study-74). Metabolism. 2010;59:774–9.

    Article  CAS  PubMed  Google Scholar 

  76. Lieb W, Zachariah JP, Xanthakis V, et al. Clinical and genetic correlates of circulating angiopoietin-2 and soluble Tie-2 in the community. Circ Cardiovasc Genet. 2010;3:300–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lim HS, Blann AD, Chong AY, et al. Plasma vascular endothelial growth factor, angiopoietin-1, and angiopoietin-2 in diabetes: implications for cardiovascular risk and effects of multifactorial intervention. Diabetes Care. 2004;27:2918–24.

    Article  CAS  PubMed  Google Scholar 

  78. Lip PL, Chatterjee S, Caine GJ, et al. Plasma vascular endothelial growth factor, angiopoietin-2, and soluble angiopoietin receptor tie-2 in diabetic retinopathy: effects of laser photocoagulation and angiotensin receptor blockade. Br J Ophthalmol. 2004;88:1543–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rasul S, Reiter MH, Ilhan A, et al. Circulating angiopoietin-2 and soluble Tie-2 in type 2 diabetes mellitus: a cross-sectional study. Cardiovasc Diabetol. 2011;10:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Campochiaro.

Ethics declarations

Conflict of Interest

Peter A. Campochiaro reports grants and other from Aerpio Therapeutics, grants and other from Regeneron Therapeutics, grants and other from Genentech/Roche, grants and personal fees from Alimera, grants and personal fees from Allergan, personal fees from Applied Genetic Technologies, grants and personal fees from AsclepiX, grants and personal fees from Rxi, personal fees from Allegro, personal fees from Intrexon, grants and personal fees from Regenxbio, grants from AbbVie, grants from Genzyme, grants from GlaxoSmithKline, grants from Oxford Biomedica, personal fees and other from Graybug, and personal fees from Merck.

Kevin G. Peters is an employee of Aerpio Therapeutics. In addition, Dr. Peters is an inventor on issued and pending composition of matter and methods of use patents for AKB-9778.

Human and Animal Rights and Informed Consent

The clinical trials discussed in this manuscript were approved by the appropriate institutional and/or national research ethics committee and were performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

All procedures performed in studies involving animals were in accordance with the ethical standards of the Johns Hopkins University School of Medicine where the studies were conducted.

Additional information

This article is part of the Topical Collection on Microvascular Complications—Retinopathy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campochiaro, P.A., Peters, K.G. Targeting Tie2 for Treatment of Diabetic Retinopathy and Diabetic Macular Edema. Curr Diab Rep 16, 126 (2016). https://doi.org/10.1007/s11892-016-0816-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-016-0816-5

Keywords

Navigation