Skip to main content

Advertisement

Log in

Diabetes and Hemochromatosis

  • Diabetes and Other Diseases-Emerging Associations (JJ Nolan, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

The common form of hereditary hemochromatosis is an autosomal recessive disorder most prevalent in Caucasians that results in excessive iron storage. The clinical manifestations of hemochromatosis are protean. HFE genotype, which determines the degree of iron overload and duration of disease have profound effects on disease expression. The prevalence of diabetes in this population has likely been underestimated because of studies that include a broad range of ethnicities and associating diabetes with allele frequency in spite of the decreased risk of diabetes in heterozygotes compared with homozygotes. Loss of insulin secretory capacity is likely the primary defect contributing to development of diabetes with insulin resistance playing a secondary role. Phlebotomy can ameliorate the defects in insulin secretion if initiated early. Screening a select population of individuals with type 2 diabetes may identify patients with hemochromatosis early and substantially impact individual clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance, •• Of major importance

  1. Pietrangelo A. Hereditary hemochromatosis: pathogenesis, diagnosis, and treatment. Gastroenterology. 2010;139(2):393–408. 408.e1-2. A comprehensive review of all clinical aspects of hemochromatosis.

  2. Federer JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Basava A, et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet. 1996;13(4):399–408.

    Article  Google Scholar 

  3. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306(5704):2090–3.

    Article  PubMed  CAS  Google Scholar 

  4. Ganz T. Systemic iron homeostasis. Physiol Rev. 2013;93(4):1721–41.

    Article  PubMed  CAS  Google Scholar 

  5. Bacon BR, Sadiq SA. Hereditary hemochromatosis: presentation and diagnosis in the 1990s. Am J Gastroenterol. 1997;92(5):784–9.

    PubMed  CAS  Google Scholar 

  6. Neghina AM, Anghel A. Hemochromatosis genotypes and risk of iron overload–a meta-analysis. Ann Epidemiol. 2011;21(1):1–14.

    Article  PubMed  Google Scholar 

  7. Beutler E, Felitti VJ, Koziol JA, Ho NJ, Gelbart T. Penetrance of 845G– > A (C282Y) HFE hereditary haemochromatosis mutation in the USA. Lancet. 2002;359(9302):211–8.

    Article  PubMed  Google Scholar 

  8. Bulaj ZJ, Ajioka RS, Phillips JD, LaSalle BA, Jorde LB, Griffen LM, et al. Disease-related conditions in relatives of patients with hemochromatosis. N Engl J Med. 2000;343(21):1529–35.

    Article  PubMed  CAS  Google Scholar 

  9. Allen KJ, Gurrin LC, Constantine CC, Osborne NJ, Delatycki MB, Nicoll AJ, et al. Iron-overload-related disease in HFE hereditary hemochromatosis. N Engl J Med. 2008;358:221–30.

    Article  PubMed  CAS  Google Scholar 

  10. Lainé F, Jouannolle AM, Morcet J, Brigand A, Pouchard M, Lafraise B, et al. Phenotypic expression in detected C282Y homozygous women depends on body mass index. J Hepatol. 2005;43(6):1055–9.

    Article  PubMed  Google Scholar 

  11. Gurrin LC, Osborne NJ, Constantine CC, McLaren CE, English DR, Gertig DM, et al. The natural history of serum iron indices for HFE C282Y homozygosity associated with hereditary hemochromatosis. Gastroenterology. 2008;135(6):1945–52.

    Article  PubMed  CAS  Google Scholar 

  12. Niederau C, Fischer R, Pürschel A, Stremmel W, Häussinger D, Strohmeyer G. Long-term survival in patients with hereditary hemochromatosis. Gastroenterology. 1996;110(4):1107–19.

    Article  PubMed  CAS  Google Scholar 

  13. Center for Disease Control and Prevention. Diabetes Data and Trends. 2013. Web. 15 Nov 2013. http://www.cdc.gov/diabetes/statistics/prevalence_national.htm

  14. Acton RT, Barton JC, Passmore LV, Adams PC, Speechley MR, Dawkins FW, et al. Relationships of serum ferritin, transferrin saturation, and HFE mutations and self-reported diabetes in the Hemochromatosis and Iron Overload Screening (HEIRS) study. Diabetes Care. 2006;29(9):2084–9.

    Article  PubMed  CAS  Google Scholar 

  15. Andersen RV, Tybjaerg-Hansen A, Appleyard M, Birgens H, Nordestgaard BG. Hemochromatosis mutations in the general population: iron overload progression rate. Blood. 2004;103(8):2914–9.

    Article  PubMed  CAS  Google Scholar 

  16. Moczulski DK, Grzeszczak W, Gawlik B. Role of hemochromatosis C282Y and H63D mutations in HFE gene in development of type 2 diabetes and diabetic nephropathy. Diabetes Care. 2001;24(7):1187–91.

    Article  PubMed  CAS  Google Scholar 

  17. Kwan T, Leber B, Ahuja S, Carter R, Gerstein HC. Patients with type 2 diabetes have a high frequency of the C282Y mutation of the hemochromatosis gene. Clin Invest Med. 1998;21(6):251–7.

    PubMed  CAS  Google Scholar 

  18. Salonen JT, Tuomainen TP, Kontula K. Role of C282Y mutation in haemochromatosis gene in development of type 2 diabetes in healthy men: prospective cohort study. BMJ. 2000;320(7251):1706–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Ellervik C, Mandrup-Poulsen T, Nordestgaard BG, Larsen LE, Appleyard M, Frandsen M, et al. Prevalence of hereditary haemochromatosis in late-onset type 1 diabetes mellitus: a retrospective study. Lancet. 2001;358(9291):1405–9.

    Article  PubMed  CAS  Google Scholar 

  20. Halsall DJ, McFarlane I, Luan J, Cox TM, Wareham NJ, et al. Typical type 2 diabetes mellitus and HFE gene mutations: a population-based case - control study. Hum Mol Genet. 2003;12(12):1361–5.

    Article  PubMed  CAS  Google Scholar 

  21. Rong Y, Bao W, Rong S, Fang M, Wang D, Yao P, et al. Hemochromatosis gene (HFE) polymorphisms and risk of type 2 diabetes mellitus: a meta-analysis. Am J Epidemiol. 2012;176(6):461–72.

    Article  PubMed  Google Scholar 

  22. Qi L, Meigs J, Manson JE, Ma J, Hunter D, Rifai N, et al. HFE genetic variability, body iron stores, and the risk of type 2 diabetes in U.S. women. Diabetes. 2005;54(12):3567–72.

    Article  PubMed  CAS  Google Scholar 

  23. Hatunic M, Finucane FM, Brennan AM, Norris S, Pacini G, Nolan JJ, et al. Effect of iron overload on glucose metabolism in patients with hereditary hemochromatosis. Metabolism. 2010;59(3):380–4. Detailed assessment of glucose metabolism in individuals with HH.

    Article  PubMed  CAS  Google Scholar 

  24. McClain DA, Abraham D, Rogers J, Brady R, Gault P, Ajioka R, et al. High prevalence of abnormal glucose homeostasis secondary to decreased insulin secretion in individuals with hereditary haemochromatosis. Diabetologia. 2006;49(7):1661–9. Provides an estimate of the prevalence of diabetes in HH unbiased by preexisting diabetes. Evidence that insulin secretion is the primary defect causing diabetes in HH.

    Article  PubMed  CAS  Google Scholar 

  25. Adams PC, Reboussin DM, Barton JC, McLaren CE, Eckfeldt JH, McLaren GD, et al. Hemochromatosis and iron-overload screening in a racially diverse population. N Engl J Med. 2005;352(17):1769–78.

    Article  PubMed  CAS  Google Scholar 

  26. O'Sullivan EP, McDermott JH, Murphy MS, Sen S, Walsh CH, et al. Declining prevalence of diabetes mellitus in hereditary haemochromatosis–the result of earlier diagnosis. Diabetes Res Clin Pract. 2008;81(3):316–20.

    Article  PubMed  Google Scholar 

  27. Bacon BR, Adams PC, Kowdley KV, Powell LW, Tavill AS. Diagnosis and management of hemochromatosis: 2011 Practice Guideline by the American Association for the Study of Liver Diseases. Hepatology. 2011;54(1):328–43. Practice guidelines for management of hemochromatosis. Discusses screening in individuals with liver disease.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Ford ES, Cogswell ME. Diabetes and serum ferritin concentration among U.S. adults. Diabetes Care. 1999;22(12):1978–83.

    Article  PubMed  CAS  Google Scholar 

  29. Cheung CL, Cheung TT, Lam KS, Cheung BM. High ferritin and low transferrin saturation are associated with pre-diabetes among a national representative sample of U.S. adults. Clin Nutr. 2013;32(6):1055–60.

    Article  PubMed  CAS  Google Scholar 

  30. R, Manson JE, Meigs JB, Ma J, Rifai N, Hu FB. Body iron stores in relation to risk of type 2 diabetes in apparently healthy women. JAMA. 2004;291(6):711–7.

  31. Aregbesola A, Voutilainen S, Virtanen JK, Mursu J, Tuomainen TP. Body iron stores and the risk of type 2 diabetes in middle-aged men. Eur J Endocrinol. 2013;169(2):247–53.

    Article  PubMed  CAS  Google Scholar 

  32. Zhao Z, Li S, Liu G, Yan F, Ma X, Huang Z, et al. Body iron stores and heme-iron intake in relation to risk of type 2 diabetes: a systematic review and meta-analysis. PLoS One. 2012;7(7):e41641.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Kunutsor SK, Apekey TA, Walley J, Kain K. Ferritin levels and risk of type 2 diabetes mellitus: an updated systematic review and meta-analysis of prospective evidence. Diabetes Metab Res Rev. 2013;29(4):308–18.

    Article  PubMed  CAS  Google Scholar 

  34. Wilson JG, Lindquist JH, Grambow SC, Crook ED, Maher JF. Potential role of increased iron stores in diabetes. Am J Med Sci. 2003;325(6):332–9.

    Article  PubMed  Google Scholar 

  35. Afkhami-Ardekani M, Rashidi M. Iron status in women with and without gestational diabetes mellitus. J Diabetes Complicat. 2009;23(3):194–8.

    Article  PubMed  Google Scholar 

  36. Sharifi F, Nasab NM, Zadeh HJ. Elevated serum ferritin concentrations in prediabetic subjects. Diabetes Vasc Dis Res. 2008;5(1):15–8.

    Article  Google Scholar 

  37. Bao W, Rong Y, Rong S, Liu L. Dietary iron intake, body iron stores, and the risk of type 2 diabetes: a systematic review and meta-analysis. BMC Med. 2012;10:119.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Rajpathak S, Ma J, Manson J, Willett WC, Hu FB. Iron intake and the risk of type 2 diabetes in women: a prospective cohort study. Diabetes Care. 2006;29(6):1370–6.

    Article  PubMed  CAS  Google Scholar 

  39. Lee DH, Folsom AR, Jacobs Jr DR. Dietary iron intake and Type 2 diabetes incidence in postmenopausal women: the Iowa Women's Health Study. Diabetologia. 2004;47(2):185–94.

    Article  PubMed  Google Scholar 

  40. Rajpathak SN, Crandall JP, Wylie-Rosett J, Kabat GC, Rohan TE, Hu FB. The role of iron in type 2 diabetes in humans. Biochim Biophys Acta. 2009;1790(7):671–81.

    Article  PubMed  CAS  Google Scholar 

  41. Borgna-Pignatti C, Rugolotto S, De Stefano P, Piga A, Di Gregorio F, Gamberini MR, et al. Survival and disease complications in thalassemia major. Ann N Y Acad Sci. 1998;850:227–31.

    Article  PubMed  CAS  Google Scholar 

  42. Gamberini MR, De Sanctis V, Gilli G. Hypogonadism, diabetes mellitus, hypothyroidism, hypoparathyroidism: incidence and prevalence related to iron overload and chelation therapy in patients with thalassaemia major followed from 1980 to 2007 in the Ferrara Centre. Pediatr Endocrinol Rev. 2008;6 Suppl 1:158–69.

    PubMed  Google Scholar 

  43. Hramiak IM, Finegood DT, Adams PC. Factors affecting glucose tolerance in hereditary hemochromatosis. Clin Invest Med. 1997;20(2):110–8.

    PubMed  CAS  Google Scholar 

  44. Kishimoto M, Endo H, Hagiwara S, Miwa A, Noda M. Immunohistochemical findings in the pancreatic islets of a patient with transfusional iron overload and diabetes: case report. J Med Invest. 2010;57(3–4):345–9.

    Article  PubMed  Google Scholar 

  45. Cooksey RC, Jouihan HA, Ajioka RS, Hazel MW, Jones DL, Kushner JP, et al. Oxidative stress, beta-cell apoptosis, and decreased insulin secretory capacity in mouse models of hemochromatosis. Endocrinology. 2004;145(11):5305–12. Comprehensive study of glucose homeostasis and failure of insulin secretion in a mouse model of HFE hemochromatosis.

    Article  PubMed  CAS  Google Scholar 

  46. Jouihan HA, Cobine PA, Cooksey RC, Hoagland EA, Boudina S, Abel ED, et al. Iron-mediated inhibition of mitochondrial manganese uptake mediates mitochondrial dysfunction in a mouse model of hemochromatosis. Mol Med. 2008;14(3–4):98–108.

    PubMed Central  PubMed  CAS  Google Scholar 

  47. Fernández-Real JM, López-Bermejo A, Ricart W. Cross-talk between iron metabolism and diabetes. Diabetes. 2002;51(8):2348–54.

    Article  PubMed  Google Scholar 

  48. Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem. 2002;277(29):25863–6.

    Article  PubMed  CAS  Google Scholar 

  49. Gabrielsen JS, Gao Y, Simcox JA, Huang J, Thorup D, Jones D, et al. Adipocyte iron regulates adiponectin and insulin sensitivity. J Clin Invest. 2012;122(10):3529–40.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Fargnoli JL, Fung TT, Olenczuk DM, Chamberland JP, Hu FB, Mantzoros CS. Adherence to healthy eating patterns is associated with higher circulating total and high-molecular-weight adiponectin and lower resistin concentrations in women from the Nurses' Health Study. Am J Clin Nutr. 2008;88(5):1213–24.

    PubMed  CAS  Google Scholar 

  51. Forouhi NG, Harding AH, Allison M, Sandhu MS, Welch A, Luben R, et al. Elevated serum ferritin levels predict new-onset type 2 diabetes: results from the EPIC-Norfolk prospective study. Diabetologia. 2007;50(5):949–56.

    Article  PubMed  CAS  Google Scholar 

  52. Mojiminiyi OA, Marouf R, Abdella NA. Body iron stores in relation to the metabolic syndrome, glycemic control and complications in female patients with type 2 diabetes. Nutr Metab Cardiovasc Dis. 2008;18(8):559–66.

    Article  PubMed  CAS  Google Scholar 

  53. Abraham D, Rogers J, Gault P, Kushner JP, McClain DA. Increased insulin secretory capacity but decreased insulin sensitivity after correction of iron overload by phlebotomy in hereditary haemochromatosis. Diabetologia. 2006;49(11):2546–51.

    Article  PubMed  CAS  Google Scholar 

  54. Hatunic M, Finucane FM, Norris S, Pacini G, Nolan JJ. Glucose metabolism after normalization of markers of iron overload by venesection in subjects with hereditary hemochromatosis. Metabolism. 2010;59(12):1811–5.

    Article  PubMed  CAS  Google Scholar 

  55. Equitani F, Fernandez-Real JM, Menichella G, Koch M, Calvani M, Nobili V, et al. Bloodletting ameliorates insulin sensitivity and secretion in parallel to reducing liver iron in carriers of HFE gene mutations. Diabetes Care. 2008;31(1):3–8.

    Article  PubMed  CAS  Google Scholar 

  56. Valenti L, Dongiovanni P, Fracanzani AL, Fargion S. Bloodletting ameliorates insulin sensitivity and secretion in parallel to reducing liver iron in carriers of HFE gene mutations: response to Equitani et al. Diabetes Care. 2008;31(3):e18.

    Article  PubMed  Google Scholar 

  57. Peterlin B, Globocnik Petrovic M, Makuc J, Hawlina M, Petrovic D. A hemochromatosis-causing mutation C282Y is a risk factor for proliferative diabetic retinopathy in Caucasians with type 2 diabetes. J Hum Genet. 2003;48(12):646–9.

    Article  PubMed  CAS  Google Scholar 

  58. Oliva R, Novials A, Sánchez M, Villa M, Ingelmo M, Recasens M, et al. The HFE gene is associated to an earlier age of onset and to the presence of diabetic nephropathy in diabetes mellitus type 2. Endocrine. 2004;24(2):111–4.

    Article  PubMed  CAS  Google Scholar 

  59. Davis TM, Beilby J, Davis WA, Olynyk JK, Jeffrey GP, Rossi E, et al. Prevalence, characteristics, and prognostic significance of HFE gene mutations in type 2 diabetes: the Fremantle Diabetes Study. Diabetes Care. 2008;31(9):1795–801.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Simcox JA, McClain DA. Iron and diabetes risk. Cell Metab. 2013;17:329–41. 720.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This publication and work described herein was supported by the NIH National Center for Advancing Translational Sciences (1ULTR001067, DM); the NIH National Institute for Diabetes, Digestive, and Kidney Diseases (T32DK007115, CM; and DK081842, DM); and the Research Service of the Veterans Administration.

Compliance with Ethics Guidelines

Conflict of Interest

T. Creighton Mitchell and Donald A. McClain declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald A. McClain.

Additional information

This article is part of the Topical Collection on Diabetes and Other Diseases-Emerging Associations

Rights and permissions

Reprints and permissions

About this article

Cite this article

Creighton Mitchell, T., McClain, D.A. Diabetes and Hemochromatosis. Curr Diab Rep 14, 488 (2014). https://doi.org/10.1007/s11892-014-0488-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-014-0488-y

Keywords

Navigation