Skip to main content

Advertisement

Log in

How to Identify the Right Patients for the Right Treatment in Metastatic Colorectal Cancer (mCRC)

  • Therapeutic Approaches to Metastatic Colorectal Cancers (L Vecchione, Section Editor)
  • Published:
Current Colorectal Cancer Reports

Abstract

A major challenge in metastatic colorectal cancer (mCRC) is the identification of specific biomarkers that are likely to predict which patients will benefit from a specific treatment, especially in recent years, that available options have substantially increased with the introduction of novel targeted therapies. To this date, a number of studies have shown that a tumor mutational profile influences outcome in mCRC patients treated with an anti-epidermal growth factor receptor (anti-EGFR)-targeting agent and should, therefore, be used to guide treatment decision. Despite our undeniable progress toward a more personalized treatment approach, we are not yet there. Prognostic and predictive markers have been identified, but their influence in distinct patient populations has not been fully elucidated. Reality seems to be more complex; clinical performance status of the patients and existing comorbidities and our treatment goal, alongside the tumor and patient mutational profile and molecular signature, will guide our initial and subsequent treatment choices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Muzny DM, Bainbridge MN, Chang K, et al. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–37.

  2. Dienstmann R, Guinney J, Delorenzi M, et al. Colorectal Cancer Subtyping Consortium (CRCSC) identification of a consensus of molecular subtypes. J Clin Oncol. 2014;32:5s. (suppl; abstr 3511).

  3. Benedix F, Kube R, Meyer F, et al. Comparison of 17,641 patients with right- and left-sided colon cancer: differences in epidemiology, perioperative course, histology, and survival. Dis Colon Rectum. 2010;53:57–64.

    Article  PubMed  Google Scholar 

  4. Loupakis F, Yang D, Yau L, et al. Primary tumor location as a prognostic factor in metastatic colorectal cancer. J Natl Cancer Inst. 2015;3:107.

  5. Klingbiel D, Saridaki Z, Roth AD, et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. Ann Oncol. 2015;26:126–32.

    Article  CAS  PubMed  Google Scholar 

  6. Missiaglia E, Jacobs B, D’Ario G, et al. Distal and proximal colon cancers differ in terms of molecular, pathological, and clinical features. Ann Oncol. 2014;25:1995–2001.

    Article  CAS  PubMed  Google Scholar 

  7. Sanoff HK, Sargent DJ, Campbell ME, et al. Five-year data and prognostic factor analysis of oxaliplatin and irinotecan combinations for advanced colorectal cancer: N9741. J Clin Oncol. 2008;26:5721–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Morris EJ, Forman D, Thomas JD, et al. Surgical management and outcomes of colorectal cancer liver metastases. Br J Surg. 2010;97:1110–8.

    Article  CAS  PubMed  Google Scholar 

  9. Schmoll HJ, Van Cutsem E, Stein A, et al. ESMO Consensus Guidelines for management of patients with colon and rectal cancer. A personalized approach to clinical decision making. Ann Oncol. 2012;23:2479–516.

    Article  CAS  PubMed  Google Scholar 

  10. Lievre A, Bachet JB, Le Corre D, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006;66:3992–5.

    Article  CAS  PubMed  Google Scholar 

  11. Amado RG, Wolf M, Peeters M, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26:1626–34.

    Article  CAS  PubMed  Google Scholar 

  12. Karapetis CS, Khambata-Ford S, Jonker DJ, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008;359:1757–65.

    Article  CAS  PubMed  Google Scholar 

  13. Bokemeyer C, Bondarenko I, Hartmann JT, et al. Efficacy according to biomarker status of cetuximab plus FOLFOX-4 as first-line treatment for metastatic colorectal cancer: the OPUS study. Ann Oncol. 2011;22:1535–46.

    Article  CAS  PubMed  Google Scholar 

  14. Douillard JY, Siena S, Cassidy J, et al. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol. 2010;28:4697–705.

    Article  CAS  PubMed  Google Scholar 

  15. Van Cutsem E, Kohne CH, Lang I, et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol. 2011;29:2011–9.

    Article  PubMed  Google Scholar 

  16. Kohne CH, Lenz HJ. Chemotherapy with targeted agents for the treatment of metastatic colorectal cancer. Oncologist. 2009;14:478–88.

    Article  PubMed  Google Scholar 

  17. Saridaki Z, Georgoulias V, Souglakos J. Mechanisms of resistance to anti-EGFR monoclonal antibody treatment in metastatic colorectal cancer. World J Gastroenterol. 2010;16:1177–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Saridaki Z, Papadatos-Pastos D, Tzardi M, et al. BRAF mutations, microsatellite instability status and cyclin D1 expression predict metastatic colorectal patients’ outcome. Br J Cancer. 2010;102:1762–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Saridaki Z, Tzardi M, Papadaki C, et al. Impact of KRAS, BRAF, PIK3CA mutations, PTEN, AREG, EREG expression and skin rash in >/= 2 line cetuximab-based therapy of colorectal cancer patients. PLoS One. 2011; 6(1):e15980.

  20. Souglakos J, Philips J, Wang R, et al. Prognostic and predictive value of common mutations for treatment response and survival in patients with metastatic colorectal cancer. Br J Cancer. 2009;101:465–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Douillard JY, Oliner KS, Siena S, et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med. 2013;369:1023–34. Confirms enhanced clinical outcome benefit from the addition of panitumumab to FOLFOX4 in patients with KRAS exon 2, 3 and 4 and NRAS exon 2, 3 and 4 wild-type tumors. Indicates no observed benefit in patients with KRAS exon 2, 3 and 4 and NRAS exon 2, 3, and 4 mutant tumors.

    Article  CAS  PubMed  Google Scholar 

  22. Peeters M, Oliner KS, Parker A, et al. Massively parallel tumor multigene sequencing to evaluate response to panitumumab in a randomized phase III study of metastatic colorectal cancer. Clin Cancer Res. 2013;19:1902–12.

    Article  CAS  PubMed  Google Scholar 

  23. De Roock W, Claes B, Bernasconi D, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol. 2010;11:753–62.

    Article  PubMed  Google Scholar 

  24. Loupakis F, Ruzzo A, Cremolini C, et al. KRAS codon 61, 146 and BRAF mutations predict resistance to cetuximab plus irinotecan in KRAS codon 12 and 13 wild-type metastatic colorectal cancer. Br J Cancer. 2009;101:715–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Lurkin I, Stoehr R, Hurst CD, et al. Two multiplex assays that simultaneously identify 22 possible mutation sites in the KRAS, BRAF, NRAS and PIK3CA genes. PLoS One 2010;5(1): e8802.

  26. Schwartzberg LS, Rivera F, Karthaus M, et al. PEAK: a randomized, multicenter phase II study of panitumumab plus modified fluorouracil, leucovorin, and oxaliplatin (mFOLFOX6) or bevacizumab plus mFOLFOX6 in patients with previously untreated, unresectable, wild-type KRAS exon 2 metastatic colorectal cancer. J Clin Oncol. 2014;32:2240–7. Supports the FIRE-3 study results regarding optimal first line treatment biologic and sequence with the mFOLFOX6 chemotherapy backbone.

    Article  CAS  PubMed  Google Scholar 

  27. Hacker E, Nagore E, Cerroni L, et al. NRAS and BRAF mutations in cutaneous melanoma and the association with MC1R genotype: findings from Spanish and Austrian populations. J Invest Dermatol. 2013;133:1027–33.

    Article  CAS  PubMed  Google Scholar 

  28. Park SJ, Sun JY, Hong K, et al. Application of BRAF, NRAS, KRAS mutations as markers for the detection of papillary thyroid cancer from FNAB specimens by pyrosequencing analysis. Clin Chem Lab Med. 2013;51:1673–80.

    CAS  PubMed  Google Scholar 

  29. Banerji U, Affolter A, Judson I, et al. BRAF and NRAS mutations in melanoma: potential relationships to clinical response to HSP90 inhibitors. Mol Cancer Ther. 2008;7:737–9.

    Article  CAS  PubMed  Google Scholar 

  30. Joseph RW, Sullivan RJ, Harrell R, et al. Correlation of NRAS mutations with clinical response to high-dose IL-2 in patients with advanced melanoma. J Immunother. 2012;35:66–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.

    Article  CAS  PubMed  Google Scholar 

  32. Di Nicolantonio F, Martini M, Molinari F, et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol. 2008;26:5705–12.

    Article  PubMed  Google Scholar 

  33. Tol J, Nagtegaal ID, Punt CJ. BRAF mutation in metastatic colorectal cancer. N Engl J Med. 2009;361:98–9.

    Article  CAS  PubMed  Google Scholar 

  34. Saridaki Z, Tzardi M, Sfakianaki M, et al. BRAFV600E mutation analysis in patients with metastatic colorectal cancer (mCRC) in daily clinical practice: correlations with clinical characteristics, and its impact on patients’ outcome. PLoS One. 2013;8(12):e84604. Denotes prospectively in daily clinical practice the prognostic and predictive value of BRAF mutations.

  35. Tejpar S, Piessevaux H. Personalized medicine in metastatic colorectal cancer treated with anti-epidermal growth factor receptor agents: a future opportunity? Asia Pac J Clin Oncol. 2014;10 Suppl 1:2–10.

  36. Presta LG, Chen H, O’Connor SJ, et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res. 1997;57:4593–9.

    CAS  PubMed  Google Scholar 

  37. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350:2335–42.

    Article  CAS  PubMed  Google Scholar 

  38. Goldberg RM, Sargent DJ, Morton RF, et al. Randomized controlled trial of reduced-dose bolus fluorouracil plus leucovorin and irinotecan or infused fluorouracil plus leucovorin and oxaliplatin in patients with previously untreated metastatic colorectal cancer: a North American Intergroup Trial. J Clin Oncol. 2006;24:3347–53.

    Article  CAS  PubMed  Google Scholar 

  39. Goldberg RM, Gill S. Recent phase III trials of fluorouracil, irinotecan, and oxaliplatin as chemotherapy for metastatic colorectal cancer. Cancer Chemother Pharmacol. 2004;54 Suppl 1:S57–64.

    CAS  PubMed  Google Scholar 

  40. Souglakos J, Ziras N, Kakolyris S, et al. Randomised phase-II trial of CAPIRI (capecitabine, irinotecan) plus bevacizumab vs FOLFIRI (folinic acid, 5-fluorouracil, irinotecan) plus bevacizumab as first-line treatment of patients with unresectable/metastatic colorectal cancer (mCRC). Br J Cancer. 2012;106:453–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Saltz LB, Clarke S, Diaz-Rubio E, et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol. 2008;26:2013–9.

    Article  CAS  PubMed  Google Scholar 

  42. Venook A, Niedzwiecki D, Lenz H, et al. CALGB/SWOG 80405: phase III trial of irinotecan/5-FU/leucovorin (FOLFIRI) or oxaliplatin/5-FU/leucovorin (mFOLFOX6) with bevacizumab (BV) or cetuximab (CET) for patients (pts) with KRAS wild-type (wt) untreated metastatic adenocarcinoma of the colon or rectum (MCRC). [Abstract: LBA3]. Presented at 2014 ASCO Annual Meeting: 30 May–3 June 2014; Chicago, IL.

  43. Fuchs CS, Marshall J, Mitchell E, et al. Randomized, controlled trial of irinotecan plus infusional, bolus, or oral fluoropyrimidines in first-line treatment of metastatic colorectal cancer: results from the BICC-C Study. J Clin Oncol. 2007;25:4779–86.

  44. Giantonio BJ, Catalano PJ, Meropol NJ, et al. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol. 2007;25:1539–44.

    Article  CAS  PubMed  Google Scholar 

  45. Cunningham D, Lang I, Marcuello E, et al. Bevacizumab plus capecitabine versus capecitabine alone in elderly patients with previously untreated metastatic colorectal cancer (AVEX): an open-label, randomised phase 3 trial. Lancet Oncol. 2013;14:1077–85.

    Article  CAS  PubMed  Google Scholar 

  46. Vamvakas L, Matikas A, Karampeazis A, et al. Capecitabine in combination with oxaliplatin and bevacizumab (AXELOX) as 1st line treatment for fit and vulnerable elderly patients (aged >70 years) with metastatic colorectal cancer (mCRC): a multicenter phase II study of the Hellenic Oncology Research Group (HORG). BMC Cancer. 2014;14:277.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Koopman M, Simkens L, May A, et al. Final results and subgroup analyses of the phase 3 CAIRO3 study: maintenance treatment with capecitabine and bevacizumab versus observation after induction treatment with chemotherapy and bevacizumab in metastatic colorectal cancer (mCRC). [Abstract: 3504]. Presented at 2014 ASCO Annual Meeting: 30 May–3 June 2014; Chicago, IL.

  48. Bennouna J, Sastre J, Arnold D, et al. Continuation of bevacizumab after first progression in metastatic colorectal cancer (ML18147): a randomised phase 3 trial. Lancet Oncol. 2013;14:29–37.

  49. Markowitz SD, Bertagnolli MM. Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med. 2009;361:2449–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Dowlati A, Gray R, Sandler AB, et al. Cell adhesion molecules, vascular endothelial growth factor, and basic fibroblast growth factor in patients with non-small cell lung cancer treated with chemotherapy with or without bevacizumab–an Eastern Cooperative Oncology Group Study. Clin Cancer Res. 2008;14:1407–12.

    Article  CAS  PubMed  Google Scholar 

  51. Ko AH, Dito E, Schillinger B, et al. A phase II study evaluating bevacizumab in combination with fixed-dose rate gemcitabine and low-dose cisplatin for metastatic pancreatic cancer: is an anti-VEGF strategy still applicable? Invest New Drugs. 2008;26:463–71.

    Article  CAS  PubMed  Google Scholar 

  52. Rudge JS, Holash J, Hylton D, et al. VEGF Trap complex formation measures production rates of VEGF, providing a biomarker for predicting efficacious angiogenic blockade. Proc Natl Acad Sci U S A. 2007;104:18363–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Siegel AB, Cohen EI, Ocean A, et al. Phase II trial evaluating the clinical and biologic effects of bevacizumab in unresectable hepatocellular carcinoma. J Clin Oncol. 2008;26:2992–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Yang JC, Haworth L, Sherry RM, et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med. 2003;349:427–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Schneider BP, Wang M, Radovich M, et al. Association of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 genetic polymorphisms with outcome in a trial of paclitaxel compared with paclitaxel plus bevacizumab in advanced breast cancer: ECOG 2100. J Clin Oncol. 2008;26:4672–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Schultheis AM, Lurje G, Rhodes KE, et al. Polymorphisms and clinical outcome in recurrent ovarian cancer treated with cyclophosphamide and bevacizumab. Clin Cancer Res. 2008;14:7554–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Ellis LM, Hicklin DJ. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer. 2008;8:579–91.

    Article  CAS  PubMed  Google Scholar 

  58. Liu Y, Starr MD, Bulusu A, et al. Correlation of angiogenic biomarker signatures with clinical outcomes in metastatic colorectal cancer patients receiving capecitabine, oxaliplatin, and bevacizumab. Cancer Med. 2013;2:234–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Hansen TF, Christensen R, Andersen RF, et al. MicroRNA-126 and epidermal growth factor-like domain 7-an angiogenic couple of importance in metastatic colorectal cancer. Results from the Nordic ACT trial. Br J Cancer. 2013;109:1243–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Hansen TF, Christensen R, Andersen RF, et al. The predictive value of single nucleotide polymorphisms in the VEGF system to the efficacy of first-line treatment with bevacizumab plus chemotherapy in patients with metastatic colorectal cancer: results from the Nordic ACT trial. Int J Colorectal Dis. 2012;27:715–20.

    Article  PubMed  Google Scholar 

  61. Taouli B, Koh DM. Diffusion-weighted MR imaging of the liver. Radiology. 2010;254:47–66.

    Article  PubMed  Google Scholar 

  62. Patterson DM, Padhani AR, Collins DJ. Technology insight: water diffusion MRI—a potential new biomarker of response to cancer therapy. Nat Clin Pract Oncol. 2008;5:220–33.

    Article  PubMed  Google Scholar 

  63. Koh DM, Scurr E, Collins D, et al. Predicting response of colorectal hepatic metastasis: value of pretreatment apparent diffusion coefficients. AJR Am J Roentgenol. 2007;188:1001–8.

    Article  PubMed  Google Scholar 

  64. Theilmann RJ, Borders R, Trouard TP, et al. Changes in water mobility measured by diffusion MRI predict response of metastatic breast cancer to chemotherapy. Neoplasia. 2004;6:831–7.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Cui Y, Zhang XP, Sun YS, et al. Apparent diffusion coefficient: potential imaging biomarker for prediction and early detection of response to chemotherapy in hepatic metastases. Radiology. 2008;248:894–900.

    Article  PubMed  Google Scholar 

  66. Willett CG, Boucher Y, Duda DG, et al. Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab with radiation and chemotherapy: continued experience of a phase I trial in rectal cancer patients. J Clin Oncol. 2005;23:8136–9.

    Article  PubMed  Google Scholar 

  67. Lenz H, Niedzwiecki D, Innocenti F, et al. CALGB/SWOG 80405: phase III trial of irinotecan/5-FU/leucovorin (FOLFIRI) or oxaliplatin/5-FU/leucovorin (mFOLFOX6) with bevacizumab (BV) or cetuximab (CET) for patients (pts) with expanded ras analyses untreated metastatic adenocarcinoma of the colon or rectum (MCRC). Presented at ESMO 2014, Madrid 26–30 September 2014 [abstract: 501O].

  68. Stintzing S, Modest DP, von Weikersthal LF, et al. Independent radiological evaluation of objective response, early tumor shrinkage, and depth of response in FIRE-3 (AIO KRK-0306) in the final RAS evaluable population. Presented at ESMO 2014, Madrid 26–30 September 2014 [abstract: LBA11]. FOLFIRI plus cetuximab superior to FOLFIRI plus bevacizumab in the first-line setting, in terms of overall survival in RAS wild-type patients, providing potential insight into optimal sequencing of cetuximab and bevacizumab in those patients. Introducing the parameters of Early Tumor Shrinkage and Depth of Response for treatment effect evaluation.

  69. Loupakis F, Cremolini C, Masi G, et al. Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. N Engl J Med. 2014;371:1609–18.

    Article  PubMed  Google Scholar 

  70. Pogue-Geile K, Yothers G, Taniyama Y, et al. Defective mismatch repair and benefit from bevacizumab for colon cancer: findings from NSABP C-08. J Natl Cancer Inst. 2013;105:989–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Joulain F, Proskorovsky I, Allegra C, et al. Mean overall survival gain with aflibercept plus FOLFIRI vs placebo plus FOLFIRI in patients with previously treated metastatic colorectal cancer. Br J Cancer. 2013;109:1735–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Van Cutsem E, Tabernero J, Lakomy R, et al. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol. 2012;30:3499–506.

    Article  PubMed  Google Scholar 

  73. Allegra CJ, Lakomy L, Tabernero J, et al. Effects of prior bevacizumab (B) use on outcomes from the VELOUR study: a phase III study of aflibercept (Afl) and FOLFIRI in patients (pts) with metastatic colorectal cancer (mCRC) after failure of an oxaliplatin regimen. J Clin Oncol. 2012;30.

  74. Tabernero J, Van Cutsem E, Lakomy R, et al. Results from VELOUR, a phase 3 study of aflibercept (A) versus placebo (pbo) in combination with FOLFIRI for the treatment of patients (pt) with previously treated metastatic colorectal cancer (MCRC). Eur J Cancer. 2011;47:5.

    Article  Google Scholar 

  75. Islam R, Chyou PH, Burmester JK. Modeling efficacy of bevacizumab treatment for metastatic colon cancer. J Cancer. 2013;4:330–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Grothey A, Van Cutsem E, Sobrero A, et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 2013;381:303–12.

    Article  CAS  PubMed  Google Scholar 

  77. Tabernero J, Cohn AL, Obermannova R, et al. RAISE: a randomized, double-blind, multicenter phase III study of irinotecan, folinic acid, and 5-fluorouracil (FOLFIRI) plus ramucirumab (RAM) or placebo (PBO) in patients (pts) with metastatic colorectal carcinoma (CRC) progressive during or following first-line combination therapy with bevacizumab (bev), oxaliplatin (ox), and a fluoropyrimidine (fp). [Abstract: 512]. Presented at 2015 Gastrointestinal Cancers Symposium: January 15–17, 2015, San Francisco, CA.

  78. Piessevaux H, Buyse M, De Roock W, et al. Radiological tumor size decrease at week 6 is a potent predictor of outcome in chemorefractory metastatic colorectal cancer treated with cetuximab (BOND trial). Ann Oncol. 2009;20:1375–82.

  79. Mansmann UR, Laubender RP, Giessen CA, et al. Validating the prognostic relevance of initial change in tumor size using a series of therapeutic regimens for patients with metastatic colorectal cancer (mCRC). [Abstract: 580]. Presented at 2012 Gastrointestinal Cancers Symposium: January 19–21, 2012, San Francisco, CA.

  80. Piessevaux H, Van Cutsem E, Bokemeyer C, et al. Early tumor shrinkage and long-term outcome in metastatic colorectal cancer (mCRC): assessment of predictive utility across treatment arms in the CRYSTAL and OPUS studies. J Clin Oncol. 2011;29.

  81. Mansmann UR, Sartorius U, Laubender RP, et al. Quantitative analysis of the impact of deepness of response on post-progression survival time following first-line treatment in patients with mCRC. [Abstract: 3630]. Presented at 2013 ASCO Annual Meeting: May 31–June 4, 2013, Chicago, IL.

  82. Diaz Jr LA, Williams RT, Wu J, et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature. 2012;486:537–40. Provides insight into and elaborates in depth the phenomena of acquired resistance under targeted therapies.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Misale S, Yaeger R, Hobor S, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature. 2012;486:532–6. Provides insight into and elaborates in depth the phenomena of acquired resistance under targeted therapies.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Basik M, Aguilar-Mahecha A, Rousseau C, et al. Biopsies: next-generation biospecimens for tailoring therapy. Nat Rev Clin Oncol. 2013;10:437–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Zenia Saridaki, Natalia Asimakopoulou, Ioannis Boukovinas, and John Souglakos declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zenia Saridaki.

Additional information

This article is part of the Topical Collection on Therapeutic Approaches to Metastatic Colorectal Cancers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saridaki, Z., Asimakopoulou, N., Boukovinas, I. et al. How to Identify the Right Patients for the Right Treatment in Metastatic Colorectal Cancer (mCRC). Curr Colorectal Cancer Rep 11, 151–159 (2015). https://doi.org/10.1007/s11888-015-0270-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-015-0270-9

Keywords

Navigation