Skip to main content

Advertisement

Log in

Anti-EGFR Resistance in Colorectal Cancer: Current Knowledge and Future Perspectives

  • Translational Colorectal Oncology (Y Jiang, Section Editor)
  • Published:
Current Colorectal Cancer Reports

Abstract

Anti-EGFR therapy in metastatic colorectal cancer (mCRC) has improved survival outcome. However, many patients do not respond to this therapy and almost all patients develop resistance after a few months of treatment. Since 2008, the therapy has been restricted to patients without mutations in KRAS, an important target in the EGFR pathway, as these patients do not benefit from anti-EGFR therapy. Recently, this has been changed to an all-RAS wild-type strategy. Despite these restrictions, still 40 to 60 % of mCRC patients are resistant. New biomarkers need to be identified in order to improve patient selection. Another problem is tumor heterogeneity, which impedes the detection of mutations in resistance genes and can consequently lead to wrong treatment decisions. A possible solution for this problem may be found in liquid biopsies. In this review, known and promising upcoming biomarkers associated with resistance to anti-EGFR therapy will be summarized. Moreover, the potential added value of liquid biopsies in patient selection and follow-up will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Jemal A et al. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    PubMed  Google Scholar 

  2. Kornmann M et al. Prognostic factors influencing the survival of patients with colon cancer receiving adjuvant 5-FU treatment. Eur J Surg Oncol. 2008;34(12):1316–21.

    PubMed  CAS  Google Scholar 

  3. Deschoolmeester V et al. A review of the most promising biomarkers in colorectal cancer: one step closer to targeted therapy. Oncologist. 2010;15(7):699–731.

    PubMed  PubMed Central  Google Scholar 

  4. Field K, Lipton L. Metastatic colorectal cancer-past, progress and future. World J Gastroenterol. 2007;13(28):3806–15.

    PubMed  CAS  Google Scholar 

  5. Sotelo MJ et al. Role of cetuximab in first-line treatment of metastatic colorectal cancer. World J Gastroenterol. 2014;20(15):4208–19.

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Rodriguez J et al. Improving disease control in advanced colorectal cancer: panitumumab and cetuximab. Crit Rev Oncol Hematol. 2010;74(3):193–202.

    PubMed  Google Scholar 

  7. Baselga J. Why the epidermal growth factor receptor? The rationale for cancer therapy. Oncologist. 2002;7 Suppl 4:2–8.

    PubMed  CAS  Google Scholar 

  8. Custodio A, Feliu J. Prognostic and predictive biomarkers for epidermal growth factor receptor-targeted therapy in colorectal cancer: beyond KRAS mutations. Crit Rev Oncol Hematol. 2013;85(1):45–81.

    PubMed  Google Scholar 

  9. Douillard JY et al. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol. 2010;28(31):4697–705.

    PubMed  CAS  Google Scholar 

  10. Cunningham D et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med. 2004;351(4):337–45.

    PubMed  CAS  Google Scholar 

  11. Van Cutsem E et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360(14):1408–17.

    PubMed  Google Scholar 

  12. Bokemeyer C et al. Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol. 2009;27(5):663–71.

    PubMed  CAS  Google Scholar 

  13. Van Cutsem E et al. Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol. 2007;25(13):1658–64.

    PubMed  Google Scholar 

  14. Peeters M et al. Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J Clin Oncol. 2010;28(31):4706–13.

    PubMed  CAS  Google Scholar 

  15. Mohan S et al. Changes in colorectal carcinoma genomes under anti-EGFR therapy identified by whole-genome plasma DNA sequencing. PLoS Genet. 2014;10(3):e1004271.

    PubMed  PubMed Central  Google Scholar 

  16. Lievre A et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006;66(8):3992–5.

    PubMed  CAS  Google Scholar 

  17. Karapetis CS et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008;359(17):1757–65.

    PubMed  CAS  Google Scholar 

  18. Amado RG et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26(10):1626–34.

    PubMed  CAS  Google Scholar 

  19. Yen LC et al. Detection of KRAS oncogene in peripheral blood as a predictor of the response to cetuximab plus chemotherapy in patients with metastatic colorectal cancer. Clin Cancer Res. 2009;15(13):4508–13.

    PubMed  CAS  Google Scholar 

  20. Douillard JY et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med. 2013;369(11):1023–34. The authors show the importance of NRAS mutations in resistance to anti-EGFR therapy.

    PubMed  CAS  Google Scholar 

  21. NCCN. Clinical practice guidelines in oncology: colon cancer version 3.2014. http://www.nccn.org/professionals/physician_gls/pdf/colon.pdf. Accessed 10 May 2014.

  22. Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003;3(6):459–65.

    PubMed  CAS  Google Scholar 

  23. Haigis KM et al. Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nat Genet. 2008;40(5):600–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Midgley RS, Kerr DJ. Ras as a target in cancer therapy. Crit Rev Oncol Hematol. 2002;44(2):109–20.

    PubMed  Google Scholar 

  25. Jehan Z et al. Frequent PIK3CA gene amplification and its clinical significance in colorectal cancer. J Pathol. 2009;219(3):337–46.

    PubMed  CAS  Google Scholar 

  26. Di Cristofano A, Pandolfi PP. The multiple roles of PTEN in tumor suppression. Cell. 2000;100(4):387–90.

    PubMed  Google Scholar 

  27. Goel A et al. Frequent inactivation of PTEN by promoter hypermethylation in microsatellite instability-high sporadic colorectal cancers. Cancer Res. 2004;64(9):3014–21.

    PubMed  CAS  Google Scholar 

  28. Siena S et al. Biomarkers predicting clinical outcome of epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer. J Natl Cancer Inst. 2009;101(19):1308–24.

    PubMed  CAS  PubMed Central  Google Scholar 

  29. Hecht JR et al. Lack of correlation between epidermal growth factor receptor status and response to panitumumab monotherapy in metastatic colorectal cancer. Clin Cancer Res. 2010;16(7):2205–13.

    PubMed  CAS  Google Scholar 

  30. Montagut C et al. Identification of a mutation in the extracellular domain of the epidermal growth factor receptor conferring cetuximab resistance in colorectal cancer. Nat Med. 2012;18(2):221–3.

    PubMed  CAS  Google Scholar 

  31. Tol J et al. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med. 2009;360(6):563–72.

    PubMed  CAS  Google Scholar 

  32. Deschoolmeester V et al. KRAS mutation detection and prognostic potential in sporadic colorectal cancer using high-resolution melting analysis. Br J Cancer. 2010;103(10):1627–36.

    PubMed  CAS  PubMed Central  Google Scholar 

  33. Lievre A et al. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol. 2008;26(3):374–9.

    PubMed  CAS  Google Scholar 

  34. Di Fiore F et al. Clinical relevance of KRAS mutation detection in metastatic colorectal cancer treated by cetuximab plus chemotherapy. Br J Cancer. 2007;96(8):1166–9.

    PubMed  PubMed Central  Google Scholar 

  35. De Roock W et al. KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. Ann Oncol. 2008;19(3):508–15.

    PubMed  Google Scholar 

  36. Van Cutsem E et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol. 2011;29(15):2011–9.

    PubMed  Google Scholar 

  37. Bokemeyer C et al. Efficacy according to biomarker status of cetuximab plus FOLFOX-4 as first-line treatment for metastatic colorectal cancer: the OPUS study. Ann Oncol. 2011;22(7):1535–46.

    PubMed  CAS  Google Scholar 

  38. Bokemeyer C et al. Addition of cetuximab to chemotherapy as first-line treatment for KRAS wild-type metastatic colorectal cancer: pooled analysis of the CRYSTAL and OPUS randomised clinical trials. Eur J Cancer. 2012;48(10):1466–75.

    PubMed  CAS  Google Scholar 

  39. Benvenuti S et al. Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Res. 2007;67(6):2643–8.

    PubMed  CAS  Google Scholar 

  40. De Roock W et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol. 2010;11(8):753–62.

    PubMed  Google Scholar 

  41. Tveit KM et al. Phase III trial of cetuximab with continuous or intermittent fluorouracil, leucovorin, and oxaliplatin (Nordic FLOX) versus FLOX alone in first-line treatment of metastatic colorectal cancer: the NORDIC-VII study. J Clin Oncol. 2012;30(15):1755–62.

    PubMed  CAS  Google Scholar 

  42. Maughan TS et al. Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. Lancet. 2011;377(9783):2103–14.

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Hecht JR et al. A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J Clin Oncol. 2009;27(5):672–80.

    PubMed  CAS  Google Scholar 

  44. De Roock W et al. Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA. 2010;304(16):1812–20.

    PubMed  Google Scholar 

  45. Tejpar S et al. Association of KRAS G13D tumor mutations with outcome in patients with metastatic colorectal cancer treated with first-line chemotherapy with or without cetuximab. J Clin Oncol. 2012;30(29):3570–7.

    PubMed  CAS  Google Scholar 

  46. Guerrero S et al. K-ras codon 12 mutation induces higher level of resistance to apoptosis and predisposition to anchorage-independent growth than codon 13 mutation or proto-oncogene overexpression. Cancer Res. 2000;60(23):6750–6.

    PubMed  CAS  Google Scholar 

  47. Mao C et al. KRAS p.G13D mutation and codon 12 mutations are not created equal in predicting clinical outcomes of cetuximab in metastatic colorectal cancer: a systematic review and meta-analysis. Cancer. 2013;119(4):714–21.

    PubMed  CAS  Google Scholar 

  48. Peeters M et al. Mutant KRAS codon 12 and 13 alleles in patients with metastatic colorectal cancer: assessment as prognostic and predictive biomarkers of response to panitumumab. J Clin Oncol. 2013;31(6):759–65.

    PubMed  CAS  Google Scholar 

  49. Loupakis F et al. KRAS codon 61, 146 and BRAF mutations predict resistance to cetuximab plus irinotecan in KRAS codon 12 and 13 wild-type metastatic colorectal cancer. Br J Cancer. 2009;101(4):715–21.

    PubMed  CAS  PubMed Central  Google Scholar 

  50. Peeters M et al. Massively parallel tumor multigene sequencing to evaluate response to panitumumab in a randomized phase III study of metastatic colorectal cancer. Clin Cancer Res. 2013;19(7):1902–12. The authors show the feasibility and potential clinical use of next generation sequencing for evaluating predictive biomarkers and the importance of NRAS mutations in anti-EGFR resistance.

    PubMed  CAS  Google Scholar 

  51. Schirripa, M., et al. Role of NRAS mutations as prognostic and predictive markers in metastatic colorectal cancer. Int J Cancer. 2014. doi:10.1002/ijc.28955.

  52. Andre T et al. Panitumumab combined with irinotecan for patients with KRAS wild-type metastatic colorectal cancer refractory to standard chemotherapy: a GERCOR efficacy, tolerance, and translational molecular study. Ann Oncol. 2013;24(2):412–9.

    PubMed  CAS  Google Scholar 

  53. Lee SH et al. BRAF mutation in multiple primary cancer with colorectal cancer and stomach cancer. Gastroenterol Rep (Oxf). 2013;1(1):70–4.

    Google Scholar 

  54. Di Nicolantonio F et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol. 2008;26(35):5705–12.

    PubMed  Google Scholar 

  55. Laurent-Puig P et al. Analysis of PTEN, BRAF, and EGFR status in determining benefit from cetuximab therapy in wild-type KRAS metastatic colon cancer. J Clin Oncol. 2009;27(35):5924–30.

    PubMed  CAS  Google Scholar 

  56. Xu Q et al. Predictive and prognostic roles of BRAF mutation in patients with metastatic colorectal cancer treated with anti-epidermal growth factor receptor monoclonal antibodies: a meta-analysis. J Dig Dis. 2013;14(8):409–16.

    PubMed  CAS  Google Scholar 

  57. Prenen H et al. PIK3CA mutations are not a major determinant of resistance to the epidermal growth factor receptor inhibitor cetuximab in metastatic colorectal cancer. Clin Cancer Res. 2009;15(9):3184–8.

    PubMed  CAS  Google Scholar 

  58. Sartore-Bianchi A et al. Multi-determinants analysis of molecular alterations for predicting clinical benefit to EGFR-targeted monoclonal antibodies in colorectal cancer. PLoS One. 2009;4(10):e7287.

    PubMed  PubMed Central  Google Scholar 

  59. Zhao L, Vogt PK. Hot-spot mutations in p110alpha of phosphatidylinositol 3-kinase (pI3K): differential interactions with the regulatory subunit p85 and with RAS. Cell Cycle. 2010;9(3):596–600.

    PubMed  CAS  PubMed Central  Google Scholar 

  60. Jhawer M et al. PIK3CA mutation/PTEN expression status predicts response of colon cancer cells to the epidermal growth factor receptor inhibitor cetuximab. Cancer Res. 2008;68(6):1953–61.

    PubMed  CAS  PubMed Central  Google Scholar 

  61. Samuels Y et al. Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell. 2005;7(6):561–73.

    PubMed  CAS  Google Scholar 

  62. Sartore-Bianchi A et al. PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies. Cancer Res. 2009;69(5):1851–7.

    PubMed  CAS  Google Scholar 

  63. Souglakos J et al. Prognostic and predictive value of common mutations for treatment response and survival in patients with metastatic colorectal cancer. Br J Cancer. 2009;101(3):465–72.

    PubMed  CAS  PubMed Central  Google Scholar 

  64. Mellinghoff IK et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med. 2005;353(19):2012–24.

    PubMed  CAS  Google Scholar 

  65. Nagata Y et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell. 2004;6(2):117–27.

    PubMed  CAS  Google Scholar 

  66. Razis E et al. EGFR gene gain and PTEN protein expression are favorable prognostic factors in patients with KRAS wild-type metastatic colorectal cancer treated with cetuximab. J Cancer Res Clin Oncol. 2014;140(5):737–48.

    PubMed  CAS  Google Scholar 

  67. Shen Y et al. Phosphatase and tensin homolog expression related to cetuximab effects in colorectal cancer patients: a meta-analysis. World J Gastroenterol. 2012;18(21):2712–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  68. Wang ZH, Gao QY, Fang JY. Loss of PTEN expression as a predictor of resistance to anti-EGFR monoclonal therapy in metastatic colorectal cancer: evidence from retrospective studies. Cancer Chemother Pharmacol. 2012;69(6):1647–55.

    PubMed  CAS  Google Scholar 

  69. Wang Y et al. High quality copy number and genotype data from FFPE samples using molecular inversion probe (MIP) microarrays. BMC Med Genomics. 2009;2:8.

    PubMed  PubMed Central  Google Scholar 

  70. Srinivasan M, Sedmak D, Jewell S. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol. 2002;161(6):1961–71.

    PubMed  CAS  PubMed Central  Google Scholar 

  71. Gerlinger M et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92. The authors report intratumor heterogeneity which can lead to an underestimation of the mutational burden of tumors by performing genomic analyses for biomarker assessment on single tumor-biopsy specimens.

    PubMed  CAS  Google Scholar 

  72. Knijn N et al. KRAS mutation analysis: a comparison between primary tumours and matched liver metastases in 305 colorectal cancer patients. Br J Cancer. 2011;104(6):1020–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  73. Baldus SE et al. Prevalence and heterogeneity of KRAS, BRAF, and PIK3CA mutations in primary colorectal adenocarcinomas and their corresponding metastases. Clin Cancer Res. 2010;16(3):790–9.

    PubMed  CAS  Google Scholar 

  74. Bouchahda M et al. Acquired KRAS mutations during progression of colorectal cancer metastases: possible implications for therapy and prognosis. Cancer Chemother Pharmacol. 2010;66(3):605–9.

    PubMed  CAS  Google Scholar 

  75. van Krieken JH et al. KRAS mutation testing for predicting response to anti-EGFR therapy for colorectal carcinoma: proposal for an European quality assurance program. Virchows Arch. 2008;453(5):417–31.

    PubMed  Google Scholar 

  76. Domagala P et al. KRAS mutation testing in colorectal cancer as an example of the pathologist’s role in personalized targeted therapy: a practical approach. Pol J Pathol. 2012;63(3):145–64.

    PubMed  CAS  Google Scholar 

  77. Angulo B et al. A commercial real-time PCR kit provides greater sensitivity than direct sequencing to detect KRAS mutations: a morphology-based approach in colorectal carcinoma. J Mol Diagn. 2010;12(3):292–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Dufort S, Richard MJ, de Fraipont F. Pyrosequencing method to detect KRAS mutation in formalin-fixed and paraffin-embedded tumor tissues. Anal Biochem. 2009;391(2):166–8.

    PubMed  CAS  Google Scholar 

  79. Tougeron D et al. Effect of low-frequency KRAS mutations on the response to anti-EGFR therapy in metastatic colorectal cancer. Ann Oncol. 2013;24(5):1267–73.

    PubMed  CAS  Google Scholar 

  80. Barbazan, J., et al. A multimarker panel for circulating tumor cells detection predicts patient outcome and therapy response in metastatic colorectal cancer. Int J Cancer. 2014. doi:10.1002/ijc.28910.

  81. Leon SA et al. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 1977;37(3):646–50.

    PubMed  CAS  Google Scholar 

  82. Choi JJ, Reich 3rd CF, Pisetsky DS. The role of macrophages in the in vitro generation of extracellular DNA from apoptotic and necrotic cells. Immunology. 2005;115(1):55–62.

    PubMed  CAS  PubMed Central  Google Scholar 

  83. Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011;11(6):426–37.

    PubMed  CAS  Google Scholar 

  84. Jung K, Fleischhacker M, Rabien A. Cell-free DNA in the blood as a solid tumor biomarker—a critical appraisal of the literature. Clin Chim Acta. 2010;411(21–22):1611–24.

    PubMed  CAS  Google Scholar 

  85. Cui M et al. Cell-Free circulating DNA: a new biomarker for the acute coronary syndrome. Cardiology. 2013;124(2):76–84.

    PubMed  CAS  Google Scholar 

  86. De Mattos-Arruda L, Olmos D, Tabernero J. Prognostic and predictive roles for circulating biomarkers in gastrointestinal cancer. Future Oncol. 2011;7(12):1385–97.

    PubMed  Google Scholar 

  87. Kim K et al. Circulating cell-free DNA as a promising biomarker in patients with gastric cancer: diagnostic validity and significant reduction of cfDNA after surgical resection. Ann Surg Treat Res. 2014;86(3):136–42.

    PubMed  PubMed Central  Google Scholar 

  88. Diehl F et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14(9):985–90.

    PubMed  CAS  PubMed Central  Google Scholar 

  89. Mouliere, F., et al. Multi-marker analysis of circulating cell-free DNA toward personalized medicine for colorectal cancer. Mol Oncol. 2014;8(5):927–41.

  90. Spindler KL et al. Quantitative cell-free DNA, KRAS, and BRAF mutations in plasma from patients with metastatic colorectal cancer during treatment with cetuximab and irinotecan. Clin Cancer Res. 2012;18(4):1177–85.

    PubMed  CAS  Google Scholar 

  91. Board RE et al. Detection of BRAF mutations in the tumour and serum of patients enrolled in the AZD6244 (ARRY-142886) advanced melanoma phase II study. Br J Cancer. 2009;101(10):1724–30.

    PubMed  CAS  PubMed Central  Google Scholar 

  92. Lefebure B et al. Prognostic value of circulating mutant DNA in unresectable metastatic colorectal cancer. Ann Surg. 2010;251(2):275–80.

    PubMed  Google Scholar 

  93. Chen H et al. K-ras mutational status predicts poor prognosis in unresectable pancreatic cancer. Eur J Surg Oncol. 2010;36(7):657–62.

    PubMed  CAS  Google Scholar 

  94. Thierry AR et al. Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat Med. 2014;20(4):430–5.

    PubMed  CAS  Google Scholar 

  95. Perkins G et al. Multi-purpose utility of circulating plasma DNA testing in patients with advanced cancers. PLoS One. 2012;7(11):e47020.

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Misale S et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature. 2012;486(7404):532–6. The authors report the possibility to detect early secondary resistance to anti-EGFR therapy in the plasma of mCRC patients, ten months before radiographic documentation of disease progression.

    PubMed  CAS  PubMed Central  Google Scholar 

  97. Diaz Jr LA et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature. 2012;486(7404):537–40.

    PubMed  CAS  PubMed Central  Google Scholar 

  98. Bettegowda C et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224.

    Google Scholar 

  99. Allard WJ et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res. 2004;10(20):6897–904.

    PubMed  Google Scholar 

  100. Cristofanilli M et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351(8):781–91.

    PubMed  CAS  Google Scholar 

  101. Cohen SJ et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26(19):3213–21.

    PubMed  Google Scholar 

  102. de Bono JS et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res. 2008;14(19):6302–9.

    PubMed  Google Scholar 

  103. Alix-Panabieres C, Pantel K. Circulating tumor cells: liquid biopsy of cancer. Clin Chem. 2013;59(1):110–8.

    PubMed  CAS  Google Scholar 

  104. Peeters DJ et al. Semiautomated isolation and molecular characterisation of single or highly purified tumour cells from cell search enriched blood samples using dielectrophoretic cell sorting. Br J Cancer. 2013;108(6):1358–67.

    PubMed  CAS  PubMed Central  Google Scholar 

  105. Sieuwerts AM et al. mRNA and microRNA expression profiles in circulating tumor cells and primary tumors of metastatic breast cancer patients. Clin Cancer Res. 2011;17(11):3600–18.

    PubMed  CAS  Google Scholar 

  106. Mostert B et al. KRAS and BRAF mutation status in circulating colorectal tumor cells and their correlation with primary and metastatic tumor tissue. Int J Cancer. 2013;133(1):130–41.

    PubMed  CAS  Google Scholar 

  107. Gasch C et al. Heterogeneity of epidermal growth factor receptor status and mutations of KRAS/PIK3CA in circulating tumor cells of patients with colorectal cancer. Clin Chem. 2013;59(1):252–60.

    PubMed  CAS  Google Scholar 

  108. Dawson SJ et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013;368(13):1199–209.

    PubMed  CAS  Google Scholar 

  109. Morgan SR et al. Comparison of KRAS mutation assessment in tumor DNA and circulating free DNA in plasma and serum samples. Clin Med Insights Pathol. 2012;5:15–22.

    PubMed  CAS  PubMed Central  Google Scholar 

  110. Taly V et al. Detecting biomarkers with microdroplet technology. Trends Mol Med. 2012;18(7):405–16.

    PubMed  CAS  Google Scholar 

  111. Pekin D et al. Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip. 2011;11(13):2156–66.

    PubMed  CAS  Google Scholar 

  112. MacConaill LE et al. Profiling critical cancer gene mutations in clinical tumor samples. PLoS One. 2009;4(11):e7887.

    PubMed  PubMed Central  Google Scholar 

  113. Forshew T et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med. 2012;4(136):136–68.

    Google Scholar 

  114. Leary RJ et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci Transl Med. 2012;4(162):162–54.

    Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Nele Boeckx, Ken Op de Beeck, Vanessa Deschoolmeester, and Guy Van Camp declare that they have no conflict of interest. Patrick Pauwels has received compensation from Amgen and Merck Serono for service as a consultant. Marc Peeters has received compensation from Amgen, Merck Serono, Sanofi, and Roche for service as a consultant.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Peeters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boeckx, N., Op de Beeck, K., Deschoolmeester, V. et al. Anti-EGFR Resistance in Colorectal Cancer: Current Knowledge and Future Perspectives. Curr Colorectal Cancer Rep 10, 380–394 (2014). https://doi.org/10.1007/s11888-014-0242-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-014-0242-5

Keywords

Navigation