Skip to main content

Advertisement

Log in

Optimization of Anti-EGFR Treatment of Advanced Colorectal Cancer

  • Therapeutic Approaches to Metastatic Colorectal Cancers (R Salazar, Section Editor)
  • Published:
Current Colorectal Cancer Reports

Abstract

Anti-epidermal growth factor receptor (EGFR) monoclonal antibodies are currently used for treatment of metastatic colorectal cancer. Although they have improved clinical outcome for these metastatic patients, only a small percentage benefit from the treatment. This limited efficacy is related to the lack of validated biomarkers that could aid better selection of the patients most likely to benefit. Although several biomarkers have been identified in recent years, we still do not know how to administer these drugs in a “personalized, targeted manner”. The purpose of this review is to summarize the state of the art of biomarker discovery and the steps to follow to optimize treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA. Cancer J. Clin. [Internet]. [cited 2014 May 24];61:69–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21296855.

  2. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, et al. Genetic alterations during colorectal-tumor development. N. Engl. J. Med. [Internet]. 1988 [cited 2014 Jun 1];319:525–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2841597.

  3. Pritchard CC, Grady WM. Colorectal cancer molecular biology moves into clinical practice. Gut [Internet]. 2011 [cited 2014 Jun 1];60:116–29. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3006043&tool=pmcentrez&rendertype=abstract.

  4. Yarden Y. The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities. Eur. J. Cancer [Internet]. 2001 [cited 2014 Jun 1];37 Suppl 4:S3–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11597398.

  5. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. [Internet]. 2001 [cited 2014 May 28];2:127–37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11252954.

  6. Ciardiello F, Tortora G. EGFR antagonists in cancer treatment. N Engl J Med. 2008;358:1160–74.

    Article  CAS  PubMed  Google Scholar 

  7. Fiske WH, Threadgill D, Coffey RJ. ERBBs in the gastrointestinal tract: recent progress and new perspectives. Exp. Cell Res. [Internet]. 2009 [cited 2014 Jun 1];315:583–601. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2941795&tool=pmcentrez&rendertype=abstract.

  8. Arteaga C. Targeting HER1/EGFR: a molecular approach to cancer therapy. Semin. Oncol. [Internet]. 2003 [cited 2014 Jun 1];30:3–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12840796.

  9. Saif MW. Colorectal cancer in review: the role of the EGFR pathway. Expert Opin. Investig. Drugs [Internet]. 2010 [cited 2014 Jun 1];19:357–69. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20095919.

  10. Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene [Internet]. 2006 [cited 2014 Jun 1];366:2–16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16377102.

  11. Mendelsohn J, Baselga J. Epidermal growth factor receptor targeting in cancer. Semin. Oncol. [Internet]. 2006 [cited 2014 Jun 1];33:369–85. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16890793.

  12. Yarom N, Jonker DJ. The role of the epidermal growth factor receptor in the mechanism and treatment of colorectal cancer. Discov. Med. [Internet]. 2011 [cited 2014 Jun 1];11:95–105. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21356164.

  13. Patel D, Guo X, Ng S, Melchior M, Balderes P, Burtrum D, et al. IgG isotype, glycosylation, and EGFR expression determine the induction of antibody-dependent cellular cytotoxicity in vitro by cetuximab. Hum. Antibodies [Internet]. 2010 [cited 2014 Jun 1];19:89–99. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21178280.

  14. Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med. [Internet]. 2004 [cited 2014 May 31];351:337–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15269313.

  15. Saltz LB, Meropol NJ, Loehrer PJ, Needle MN, Kopit J, Mayer RJ. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J. Clin. Oncol. [Internet]. 2004 [cited 2014 Jun 1];22:1201–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14993230.

  16. Chung KY, Shia J, Kemeny NE, Shah M, Schwartz GK, Tse A, et al. Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J. Clin. Oncol. [Internet]. 2005 [cited 2014 Jun 1];23:1803–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15677699.

  17. EMA [Internet]. Available from: http://www.ema.europa.eu/.

  18. No Title [Internet]. Available from: http://www.fda.gov/.

  19. Lièvre A, Bachet J-B, Le Corre D, Boige V, Landi B, Emile J-F, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. [Internet]. 2006 [cited 2014 Jun 1];66:3992–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16618717.

  20. Di Fiore F, Blanchard F, Charbonnier F, Le Pessot F, Lamy A, Galais MP, et al. Clinical relevance of KRAS mutation detection in metastatic colorectal cancer treated by Cetuximab plus chemotherapy. Br. J. Cancer [Internet]. 2007 [cited 2014 Jun 1];96:1166–9. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2360149&tool=pmcentrez&rendertype=abstract.

  21. Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol. [Internet]. 2008 [cited 2014 Jun 1];26:1626–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18316791.

  22. De Roock W, Claes B, Bernasconi D, De Schutter J, Biesmans B, Fountzilas G, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: A retrospective consortium analysis. Lancet Oncol. [Internet]. 2010 [cited 2014 Jun 1];11:753–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20619739.

  23. Karapetis CS, Khambata-Ford S, Jonker DJ, O’Callaghan CJ, Tu D, Tebbutt NC, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med. [Internet]. 2008 [cited 2014 Jun 1];359:1757–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18946061.

  24. Bokemeyer C, Bondarenko I, Makhson A, Hartmann JT, Aparicio J, de Braud F, et al. Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J. Clin. Oncol. [Internet]. 2009 [cited 2014 Jun 1];27:663–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19114683.

  25. Van Cutsem E, Köhne C-H, Hitre E, Zaluski J, Chang Chien C-R, Makhson A, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N. Engl. J. Med. [Internet]. 2009 [cited 2014 May 25];360:1408–17. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19339720.

  26. Douillard J-Y, Siena S, Cassidy J, Tabernero J, Burkes R, Barugel M, et al. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J. Clin. Oncol. [Internet]. 2010 [cited 2014 May 26];28:4697–705. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20921465.

  27. Allegra CJ, Jessup JM, Somerfield MR, Hamilton SR, Hammond EH, Hayes DF, et al. American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J. Clin. Oncol. [Internet]. 2009 [cited 2014 Jun 1];27:2091–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19188670.

  28. Rosen N. Molecular biology of gastrointestinal cancers. Cancer—Principles Pract. Oncol. 5th edn. eds Devita. 1997. p. 971–9.

  29. Bos JL, Fearon ER, Hamilton SR, Verlaan-de Vries M, van Boom JH, van der Eb AJ, et al. Prevalence of ras gene mutations in human colorectal cancers. Nature [Internet]. [cited 2014 Jun 1];327:293–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3587348.

  30. Santini D, Loupakis F, Vincenzi B, Floriani I, Stasi I, Canestrari E, et al. High concordance of KRAS status between primary colorectal tumors and related metastatic sites: implications for clinical practice. Oncologist [Internet]. 2008 [cited 2014 Jun 1];13:1270–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19056857.

  31. Artale S, Sartore-Bianchi A, Veronese SM, Gambi V, Sarnataro CS, Gambacorta M, et al. Mutations of KRAS and BRAF in primary and matched metastatic sites of colorectal cancer. J. Clin. Oncol. [Internet]. 2008 [cited 2014 Jun 1];26:4217–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18757341.

  32. Scott Kopetz, Michael J. Overman, Ken Chen, Agda Karina Lucio-Eterovic, Bryan K. Kee, David R. Fogelman, Arvind Dasari, Kanwal Pratap Singh Raghav, Eduardo Vilar Sanchez, Jonathan Phillips, Imad Shureiqi, Chris R. Garrett, Robert A. Wolff, Keyur Patel, Kenneth D. Aldape, Rajyalakshmi Luthra, Mark Routbort, Dipen M. Maru, Funda Meric-Bernstam CE. Mutation and copy number discordance in primary versus metastatic colorectal cancer (mCRC). JCO [Internet]. 2014; Available from: J Clin Oncol 32:5s, 2014 (suppl; abstr 3509).

  33. Loupakis F, Ruzzo A, Cremolini C, Vincenzi B, Salvatore L, Santini D, et al. KRAS codon 61, 146 and BRAF mutations predict resistance to cetuximab plus irinotecan in KRAS codon 12 and 13 wild-type metastatic colorectal cancer. Br. J. Cancer [Internet]. 2009 [cited 2014 Jun 1];101:715–21. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2736831&tool=pmcentrez&rendertype=abstract.

  34. De Roock W, Jonker DJ, Di Nicolantonio F, Sartore-Bianchi A, Tu D, Siena S, et al. Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA [Internet]. 2010 [cited 2014 Jun 1];304:1812–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20978259.

  35. Tejpar S, Celik I, Schlichting M, Sartorius U, Bokemeyer C, Van Cutsem E. Association of KRAS G13D tumor mutations with outcome in patients with metastatic colorectal cancer treated with first-line chemotherapy with or without cetuximab. J. Clin. Oncol. [Internet]. 2012 [cited 2014 Jun 1];30:3570–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22734028.

  36. Valtorta E, Misale S, Sartore-Bianchi A, Nagtegaal ID, Paraf F, Lauricella C, et al. KRAS gene amplification in colorectal cancer and impact on response to EGFR-targeted therapy. Int. J. Cancer [Internet]. 2013 [cited 2014 Jun 1];133:1259–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23404247.

  37. De Roock W, Piessevaux H, De Schutter J, Janssens M, De Hertogh G, Personeni N, et al. KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. Ann. Oncol. [Internet]. 2008 [cited 2014 May 23];19:508–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17998284.

  38. Douillard JY, Siena S, Cassidy J, Tabernero J, Burkes R, Barugel M, et al. Final results from PRIME: randomized phase 3 study of panitumumab with FOLFOX4 for first-line treatment of metastatic colorectal cancer. Ann. Oncol. [Internet]. 2014 [cited 2014 Jun 3]; Available from: http://www.ncbi.nlm.nih.gov/pubmed/24718886.

  39. Stintzing S, Jung A RL. Analysis of KRAS/NRAS and BRAF mutations in FIRE-3: A randomized phase III study of FOLFIRI plus cetuximab or bevacizumab as first-line treatment for wild-type (WT) KRAS (exon 2) metastatic colorectal cancer (mCRC) patients. European Cancer Congress 2013.

  40. Schwartzberg LS, Rivera F, Karthaus M, Fasola G, Canon J-L, Hecht JR, et al. PEAK: A Randomized, Multicenter Phase II Study of Panitumumab Plus Modified Fluorouracil, Leucovorin, and Oxaliplatin (mFOLFOX6) or Bevacizumab Plus mFOLFOX6 in Patients With Previously Untreated, Unresectable, Wild-Type KRAS Exon 2 Metastatic Colorectal. J. Clin. Oncol. [Internet]. 2014 [cited 2014 Jun 3]; Available from: http://www.ncbi.nlm.nih.gov/pubmed/24687833.

  41. Fortunato Ciardiello, Heinz-Josef Lenz, Claus-Henning Kohne, Volker Heinemann, Sabine Tejpar, Ivan Melezinek, Frank Beier, Christopher Stroh EVC. Treatment outcome according to tumor RAS mutation status in CRYSTAL study patients with metastatic colorectal cancer (mCRC) randomized to FOLFIRI with/without cetuximab. 2014. Available from: J Clin Oncol 32:5s, 2014 (suppl; abstr 3506). KRAS exon2 mutation had already been shown to be associated with lack of response to anti-EGFR moAbs, thus leading, in 2008, the competent authorities to restrict the use of anti-EGFR moAbs to KRAS WT mCRC patients only. The studies reported in references 38, 39, 40 and 41 prove that the KRAS mutation alone is not sufficient for selection of patients who will benefit from cetuximab and panitumumab. They clearly demonstrate that other mutations in KRAS, not only exon 2 but also exons 3 and 4, and mutations in NRAS exons 2, 3, and 4 are important for selection of patients to treat with anti-EGFR moAbs. The importance of these studies is that the RAS analysis seems to be required for all RAS genes, and this might change clinical practice.

  42. Di Nicolantonio F, Martini M, Molinari F, Sartore-Bianchi A, Arena S, Saletti P, et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J. Clin. Oncol. [Internet]. 2008 [cited 2014 Jun 1];26:5705–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19001320.

  43. Souglakos J, Philips J, Wang R, Marwah S, Silver M, Tzardi M, et al. Prognostic and predictive value of common mutations for treatment response and survival in patients with metastatic colorectal cancer. Br. J. Cancer [Internet]. 2009 [cited 2014 Jun 1];101:465–72. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2720232&tool=pmcentrez&rendertype=abstract.

  44. Laurent-Puig P, Cayre A, Manceau G, Buc E, Bachet J-B, Lecomte T, et al. Analysis of PTEN, BRAF, and EGFR status in determining benefit from cetuximab therapy in wild-type KRAS metastatic colon cancer. J. Clin. Oncol. [Internet]. 2009 [cited 2014 May 28];27:5924–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19884556.

  45. Bokemeyer C, Van Cutsem E, Rougier P, Ciardiello F, Heeger S, Schlichting M, et al. Addition of cetuximab to chemotherapy as first-line treatment for KRAS wild-type metastatic colorectal cancer: pooled analysis of the CRYSTAL and OPUS randomised clinical trials. Eur. J. Cancer [Internet]. 2012 [cited 2014 Jun 1];48:1466–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22446022.

  46. Bertotti A, Migliardi G, Galimi F, Sassi F, Torti D, Isella C, et al. A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov. [Internet]. 2011 [cited 2014 Jun 1];1:508–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22586653.

  47. Yonesaka K, Zejnullahu K, Okamoto I, Satoh T, Cappuzzo F, Souglakos J, et al. Activation of ERBB2 signaling causes resistance to the EGFR-directed therapeutic antibody cetuximab. Sci. Transl. Med. [Internet]. 2011 [cited 2014 Jun 1];3:99ra86. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3268675&tool=pmcentrez&rendertype=abstract.

  48. Personeni N, Fieuws S, Piessevaux H, De Hertogh G, De Schutter J, Biesmans B, et al. Clinical usefulness of EGFR gene copy number as a predictive marker in colorectal cancer patients treated with cetuximab: a fluorescent in situ hybridization study. Clin. Cancer Res. [Internet]. 2008 [cited 2014 Jun 1];14:5869–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18794099.

  49. Laurent-Puig P, Cayre A, Manceau G, Buc E, Bachet J-B, Lecomte T, et al. Analysis of PTEN, BRAF, and EGFR status in determining benefit from cetuximab therapy in wild-type KRAS metastatic colon cancer. J. Clin. Oncol. [Internet]. 2009 [cited 2014 May 28];27:5924–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19884556.

  50. Saridaki Z, Tzardi M, Papadaki C, Sfakianaki M, Pega F, Kalikaki A, et al. Impact of KRAS, BRAF, PIK3CA mutations, PTEN, AREG, EREG expression and skin rash in ≥ 2 line cetuximab-based therapy of colorectal cancer patients. PLoS One [Internet]. 2011 [cited 2014 Jun 1];6:e15980. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3024325&tool=pmcentrez&rendertype=abstract.

  51. Prenen H, De Schutter J, Jacobs B, De Roock W, Biesmans B, Claes B, et al. PIK3CA mutations are not a major determinant of resistance to the epidermal growth factor receptor inhibitor cetuximab in metastatic colorectal cancer. Clin. Cancer Res. [Internet]. 2009 [cited 2014 Jun 1];15:3184–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19366826.

  52. Perrone F, Lampis A, Orsenigo M, Di Bartolomeo M, Gevorgyan A, Losa M, et al. PI3KCA/PTEN deregulation contributes to impaired responses to cetuximab in metastatic colorectal cancer patients. Ann. Oncol. [Internet]. 2009 [cited 2014 Jun 1];20:84–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18669866.

  53. Sartore-Bianchi A, Martini M, Molinari F, Veronese S, Nichelatti M, Artale S, et al. PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies. Cancer Res. [Internet]. 2009 [cited 2014 Jun 1];69:1851–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19223544.

  54. Frattini M, Saletti P, Romagnani E, Martin V, Molinari F, Ghisletta M, et al. PTEN loss of expression predicts cetuximab efficacy in metastatic colorectal cancer patients. Br. J. Cancer [Internet]. 2007 [cited 2014 Jun 1];97:1139–45. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2360431&tool=pmcentrez&rendertype=abstract.

  55. Loupakis F, Pollina L, Stasi I, Ruzzo A, Scartozzi M, Santini D, et al. PTEN expression and KRAS mutations on primary tumors and metastases in the prediction of benefit from cetuximab plus irinotecan for patients with metastatic colorectal cancer. J. Clin. Oncol. [Internet]. 2009 [cited 2014 Jun 1];27:2622–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19398573.

  56. Tcga. Comprehensive molecular characterization of human colon and rectal cancer. Nature [Internet]. Nature Publishing Group; 2012 [cited 2014 May 23];487:330–7. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3401966&tool=pmcentrez&rendertype=abstract.

  57. Khambata-Ford S, Garrett CR, Meropol NJ, Basik M, Harbison CT, Wu S, et al. Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J. Clin. Oncol. [Internet]. 2007 [cited 2014 May 24];25:3230–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17664471.

  58. Jacobs B, De Roock W, Piessevaux H, Van Oirbeek R, Biesmans B, De Schutter J, et al. Amphiregulin and epiregulin mRNA expression in primary tumors predicts outcome in metastatic colorectal cancer treated with cetuximab. J. Clin. Oncol. [Internet]. 2009 [cited 2014 May 24];27:5068–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19738126.

  59. Tabernero J, Cervantes A, Rivera F, Martinelli E, Rojo F, von Heydebreck A, et al. Pharmacogenomic and pharmacoproteomic studies of cetuximab in metastatic colorectal cancer: biomarker analysis of a phase I dose-escalation study. J. Clin. Oncol. [Internet]. 2010 [cited 2014 May 24];28:1181–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20100964.

  60. Tian S, Simon I, Moreno V, Roepman P, Tabernero J, Snel M, et al. A combined oncogenic pathway signature of BRAF, KRAS and PI3KCA mutation improves colorectal cancer classification and cetuximab treatment prediction. Gut [Internet]. 2013 [cited 2014 May 29];62:540–9. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3596735&tool=pmcentrez&rendertype=abstract.

  61. Baker JB, Dutta D, Watson D, Maddala T, Munneke BM, Shak S, et al. Tumour gene expression predicts response to cetuximab in patients with KRAS wild-type metastatic colorectal cancer. Br. J. Cancer [Internet]. 2011 [cited 2014 May 24];104:488–95. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3049558&tool=pmcentrez&rendertype=abstract.

  62. Rhodes DR, Lockwood Banka W CA. Gene Expression Modules Associated with Cetuximab Response in Metastatic Colorectal Cancer Predict Additional Patient Populations Likely to Respond. AACR Translation of the Cancer Genome. The authors of both reference 60 and 62 demonstrate that, compared with single gene alterations, use of gene modules can enable better prediction of the response to targeted agents, thus highlighting the concept that we should go beyond the assumption of a binary relationship between one genetic event and response or resistance to anti-EGFR drugs and that several factors can affect the response to these agents.

  63. Van Cutsem E, Tejpar S, Vanbeckevoort D, Peeters M, Humblet Y, Gelderblom H, et al. Intrapatient cetuximab dose escalation in metastatic colorectal cancer according to the grade of early skin reactions: the randomized EVEREST study. J. Clin. Oncol. [Internet]. 2012 [cited 2014 Jun 1];30:2861–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22753904.

  64. Van Cutsem E, Peeters M, Siena S, Humblet Y, Hendlisz A, Neyns B, et al. Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J. Clin. Oncol. [Internet]. 2007 [cited 2014 Jun 1];25:1658–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17470858.

  65. Diaz LA, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J. Clin. Oncol. [Internet]. 2014 [cited 2014 May 30];32:579–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24449238.

  66. Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature [Internet]. 2012 [cited 2014 May 28];486:532–6. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3927413&tool=pmcentrez&rendertype=abstract

  67. Bardelli A, Corso S, Bertotti A, Hobor S, Valtorta E, Siravegna G, et al. Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer. Cancer Discov. [Internet]. 2013 [cited 2014 Jun 1];3:658–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23729478. The authors of reference 66 and 67 introduce two important concepts: the importance of liquid biopsy as validated technique for early detection of the molecular mechanisms of acquired resistance and the discovery of acquired KRAS mutations and MET amplification as mechanisms of secondary resistance to anti-EGFR treatments.

  68. Misale S, Arena S, Lamba S, Siravegna G, Lallo A, Hobor S, et al. Blockade of EGFR and MEK intercepts heterogeneous mechanisms of acquired resistance to anti-EGFR therapies in colorectal cancer. Sci. Transl. Med. [Internet]. 2014 [cited 2014 Jun 1];6:224ra26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24553387.

  69. Schlicker A, Beran G, Chresta CM, McWalter G, Pritchard A, Weston S, et al. Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines. BMC Med. Genomics [Internet]. BMC Medical Genomics; 2012;5:66. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3543849&tool=pmcentrez&rendertype=abstract.

  70. Budinska E, Popovici V, Tejpar S, D’Ario G, Lapique N, Sikora KO, et al. Gene expression patterns unveil a new level of molecular heterogeneity in colorectal cancer. J. Pathol. [Internet]. 2013 [cited 2014 May 31];231:63–76. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3840702&tool=pmcentrez&rendertype=abstract.

  71. De Sousa E Melo F, Wang X, Jansen M, Fessler E, Trinh A, de Rooij LPMH, et al. Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat. Med. [Internet]. Nature Publishing Group; 2013 [cited 2014 May 26];19:614–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23584090.

  72. Sadanandam A, Lyssiotis C A, Homicsko K, Collisson E A, Gibb WJ, Wullschleger S, et al. A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat. Med. [Internet]. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.; 2013 [cited 2014 May 26];19:619–25. Available from: doi:10.1038/nm.3175.

  73. Simon I. Colorectal cancer intrinsic subtypes predict chemotherapy benefit , deficient mismatch repair and epithelial-to- mesenchymal transition Colorectal cancer intrinsic subtypes predict chemotherapy benefit , deficient mismatch repair and epithelial-to- mesenc. The authors of the references 69, 70, 71 and 72 showed, independently, that colon cancer is an heterogeneous disease. Nevertheless, different subgroups of the disease can be identified and might further aid better understanding of colon cancer biology and stratification of patients for the right treatment on the basis of their molecular features.

Download references

Acknowledgments

The author would like to thank Dr A. Schlicker (NKI/AVL Amsterdam), Dr G. Korkmarz (NKI/AVL Amsterdam), Dr L. Mittempergher (NKI/AVL Amsterdam), and Dr V. Gambino (NKI/AVL Amsterdam) for critical reading of the manuscript. A special thanks to Professor René Bernards (NKI/AVL Amsterdam), Professor Jan Schellens (NKI/AVL Amsterdam) and Professor Fortunato Ciardiello (SUN Naples) for their mentorship and guidance. Loredana Vecchione is supported by an ESMO fellowship for Translational Research.

Compliance with Ethics Guidelines

Conflict of Interest

Loredana Vecchione declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loredana Vecchione.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vecchione, L. Optimization of Anti-EGFR Treatment of Advanced Colorectal Cancer. Curr Colorectal Cancer Rep 10, 263–271 (2014). https://doi.org/10.1007/s11888-014-0232-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-014-0232-7

Keywords

Navigation