Skip to main content

Advertisement

Log in

What Is the Status of Regenerative Therapy in Heart Failure?

  • Heart Failure (HJ Eisen, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Heart failure remains a major public health concern with high burden of morbidity and mortality despite advances in pharmacotherapy, device therapy, and surgical and percutaneous techniques. Cardiac regeneration may have a role to play in these patients with a huge unmet need for these therapies in patients with chronic ischemic heart disease, post-infarct heart failure, dilated cardiomyopathy, and heart failure with preserved ejection fraction.

Recent Findings

In this review, we focus on the pre-clinical and translational basis for different modes of cardiac regenerative medicine and then critically appraise the clinical evidence amassed from pivotal clinical trials focused on cardiac regeneration for ischemic and non-ischemic cardiomyopathies.

Summary

Cardiac regenerative medicine is rapidly evolving with novel approaches involving cell-based, cell-free, tissue engineering, and hybrid therapies to achieve myocardial regeneration and repair. Further studies are warranted with a robust comparison arm with optimal contemporary medical therapy to translate regenerative therapies to a clinical reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019;139(10):e56–e528.

    Article  PubMed  Google Scholar 

  2. Pfeffer MA, Shah AM, Borlaug BA. Heart failure with preserved ejection fraction in perspective. Circ Res. 2019;124(11):1598–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stone GW, Lindenfeld JA, Abraham WT, Kar S, Lim DS, Mishell JM, et al. Transcatheter mitral-valve repair in patients with heart failure. N Engl J Med. 2018;379(24):2307–18.

    Article  PubMed  Google Scholar 

  4. Moss AJ, Hall WJ, Cannom DS, Klein H, Brown MW, Daubert JP, et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N Engl J Med. 2009;361(14):1329–38.

    Article  PubMed  Google Scholar 

  5. McMurray JJ, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371(11):993–1004.

    Article  PubMed  CAS  Google Scholar 

  6. McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008.

    Article  CAS  PubMed  Google Scholar 

  7. Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383(15):1413–24.

    Article  CAS  PubMed  Google Scholar 

  8. Armstrong PW, Pieske B, Anstrom KJ, Ezekowitz J, Hernandez AF, Butler J, et al. Vericiguat in patients with heart failure and reduced ejection fraction. N Engl J Med. 2020;382(20):1883–93.

    Article  CAS  PubMed  Google Scholar 

  9. Teerlink JR, Diaz R, Felker GM, McMurray JJV, Metra M, Solomon SD, et al. Cardiac Myosin activation with omecamtiv mecarbil in systolic heart failure. N Engl J Med. 2021;384(2):105–16.

    Article  CAS  PubMed  Google Scholar 

  10. Chen J, Normand SLT, Wang Y, Krumholz HM. National and regional trends in heart failure hospitalization and mortality rates for Medicare beneficiaries, 1998-2008. JAMA. 2011;306(15):1669–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Conrad N, Judge A, Canoy D, Tran J, Pinho-Gomes AC, Millett ERC, et al. Temporal trends and patterns in mortality after incident heart failure: a longitudinal analysis of 86000 individuals. JAMA Cardiol. 2019;4(11):1102–11.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Halliday BP, Wassall R, Lota AS, Khalique Z, Gregson J, Newsome S, et al. Withdrawal of pharmacological treatment for heart failure in patients with recovered dilated cardiomyopathy (TRED-HF): an open-label, pilot, randomised trial. Lancet. 2019;393(10166):61–73.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Glezeva N, Baugh JA. Role of inflammation in the pathogenesis of heart failure with preserved ejection fraction and its potential as a therapeutic target. Heart Fail Rev. 2014;19(5):681–94.

    Article  CAS  PubMed  Google Scholar 

  14. Tompkins BA, Balkan W, Winkler J, Gyöngyösi M, Goliasch G, Fernández-Avilés F, et al. Preclinical studies of stem cell therapy for heart disease. Circ Res. 2018;122(7):1006–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hashimoto H, Olson EN, Bassel-Duby R. Therapeutic approaches for cardiac regeneration and repair. Nat Rev Cardiol. 2018;15(10):585–600.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Braunwald E. Cell-based therapy in cardiac regeneration: an overview. Circ Res. 2018;123(2):132–7.

    Article  CAS  PubMed  Google Scholar 

  17. Lim SY, Cho DI, Jeong HY, Kang HJ, Kim MR, Cho M, et al. Adjuvant role of macrophages in stem cell-induced cardiac repair in rats. Exp Mol Med. 2018;50(11):1–10.

    Article  PubMed  CAS  Google Scholar 

  18. Gnecchi M, He H, Liang OD, Melo LG, Morello F, Mu H, et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med. 2005;11(4):367–8.

    Article  CAS  PubMed  Google Scholar 

  19. Yoshioka T, Ageyama N, Shibata H, Yasu T, Misawa Y, Takeuchi K, et al. Repair of infarcted myocardium mediated by transplanted bone marrow-derived CD34+ stem cells in a nonhuman primate model. Stem Cells. 2005;23(3):355–64.

    Article  CAS  PubMed  Google Scholar 

  20. Bartunek J, Behfar A, Dolatabadi D, Vanderheyden M, Ostojic M, Dens J, et al. Cardiopoietic stem cell therapy in heart failure: the C-CURE (Cardiopoietic stem Cell therapy in heart failURE) multicenter randomized trial with lineage-specified biologics. J Am Coll Cardiol. 2013;61(23):2329–38.

    Article  PubMed  Google Scholar 

  21. Bartunek J, Terzic A, Davison BA, Filippatos GS, Radovanovic S, Beleslin B, et al. Cardiopoietic cell therapy for advanced ischaemic heart failure: results at 39 weeks of the prospective, randomized, double blind, sham-controlled CHART-1 clinical trial. Eur Heart J. 2017;38(9):648–60.

    CAS  PubMed  Google Scholar 

  22. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114(6):763–76.

    Article  CAS  PubMed  Google Scholar 

  23. Bolli R, Tang XL, Sanganalmath SK, Rimoldi O, Mosna F, Abdel-Latif A, et al. Intracoronary delivery of autologous cardiac stem cells improves cardiac function in a porcine model of chronic ischemic cardiomyopathy. Circulation. 2013;128(2):122–31.

    Article  CAS  PubMed  Google Scholar 

  24. Tseliou E, Kanazawa H, Dawkins J, Gallet R, Kreke M, Smith R, et al. Widespread myocardial delivery of heart-derived stem cells by nonocclusive triple-vessel intracoronary infusion in porcine ischemic cardiomyopathy: superior attenuation of adverse remodeling documented by magnetic resonance imaging and histology. PLoS One. 2016;11(1):e0144523.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Johnston PV, et al. Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation. 2009;120(12):1075–83 7 p following 1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Emmert MY. Cell-based cardiac regeneration. Eur Heart J. 2017;38(15):1095–8.

    Article  PubMed  Google Scholar 

  27. Williams AR, Hatzistergos KE, Addicott B, McCall F, Carvalho D, Suncion V, et al. Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation. 2013;127(2):213–23.

    Article  PubMed  Google Scholar 

  28. Mazzola M, Di Pasquale E. Toward cardiac regeneration: combination of pluripotent stem cell-based therapies and bioengineering strategies. Front Bioeng Biotechnol. 2020;8:455.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zwi-Dantsis L, Huber I, Habib M, Winterstern A, Gepstein A, Arbel G, et al. Derivation and cardiomyocyte differentiation of induced pluripotent stem cells from heart failure patients. Eur Heart J. 2013;34(21):1575–86.

    Article  CAS  PubMed  Google Scholar 

  30. Rojas SV, Kensah G, Rotaermel A, Baraki H, Kutschka I, Zweigerdt R, et al. Transplantation of purified iPSC-derived cardiomyocytes in myocardial infarction. PLoS One. 2017;12(5):e0173222.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Zhu W, Zhao M, Mattapally S, Chen S, Zhang J. CCND2 overexpression enhances the regenerative potency of human induced pluripotent stem cell-derived cardiomyocytes: remuscularization of injured ventricle. Circ Res. 2018;122(1):88–96.

    Article  CAS  PubMed  Google Scholar 

  32. Ghiroldi A, et al. Cell-Based therapies for cardiac regeneration: a comprehensive review of past and ongoing strategies. Int J Mol Sci. 2018;19(10):3194.

    Article  PubMed Central  Google Scholar 

  33. Ferrini A, Stevens MM, Sattler S, Rosenthal N. Toward regeneration of the heart: bioengineering strategies for immunomodulation. Front Cardiovasc Med. 2019;6:26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oduk Y, Zhu W, Kannappan R, Zhao M, Borovjagin AV, Oparil S, et al. VEGF nanoparticles repair the heart after myocardial infarction. Am J Physiol Heart Circ Physiol. 2018;314(2):H278–84.

    Article  PubMed  CAS  Google Scholar 

  35. Carlsson L, Clarke JC, Yen C, Gregoire F, Albery T, Billger M, et al. Biocompatible, purified VEGF-A mRNA improves cardiac function after intracardiac injection 1 week post-myocardial infarction in swine. Mol Ther Methods Clin Dev. 2018;9:330–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reboucas JS, Santos-Magalhaes NS, Formiga FR. Cardiac regeneration using growth factors: advances and challenges. Arq Bras Cardiol. 2016;107(3):271–5.

    PubMed  PubMed Central  Google Scholar 

  37. Xu MY, Ye ZS, Song XT, Huang RC. Differences in the cargos and functions of exosomes derived from six cardiac cell types: a systematic review. Stem Cell Res Ther. 2019;10(1):194.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A, Aguor ENE, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. 2013;10(3):301–12.

    Article  CAS  PubMed  Google Scholar 

  39. Bian S, Zhang L, Duan L, Wang X, Min Y, Yu H. Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J Mol Med (Berl). 2014;92(4):387–97.

    Article  CAS  Google Scholar 

  40. Wang L, Jia Q, Xinnong C, Xie Y, Yang Y, Zhang A, et al. Role of cardiac progenitor cell-derived exosome-mediated microRNA-210 in cardiovascular disease. J Cell Mol Med. 2019;23(11):7124–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu R, Gao W, Yao K, Ge J. Roles of exosomes derived from immune cells in cardiovascular diseases. Front Immunol. 2019;10:648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009;54(24):2277–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bartunek J, et al. Cardiopoietic stem cell therapy in ischaemic heart failure: long-term clinical outcomes. ESC Heart Fail. 2020;7(6):3345–54 Findings from this study (long-term follow-up analysis from CHART-1 trial) show improved cardiovascular outcomes with cardiopoietic stem cells in a subset of ischemic heart failure patients with enlarged left ventricles at baseline.

    Article  PubMed Central  Google Scholar 

  44. Hare JM, Fishman JE, Gerstenblith G, DiFede Velazquez DL, Zambrano JP, Suncion VY, et al. Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA. 2012;308(22):2369–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hare JM, DiFede DL, Rieger AC, Florea V, Landin AM, el-Khorazaty J, et al. Randomized comparison of allogeneic versus autologous mesenchymal stem cells for nonischemic dilated cardiomyopathy: POSEIDON-DCM Trial. J Am Coll Cardiol. 2017;69(5):526–37.

    Article  PubMed  Google Scholar 

  46. Malliaras K, Makkar RR, Smith RR, Cheng K, Wu E, Bonow RO, et al. Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction). J Am Coll Cardiol. 2014;63(2):110–22.

    Article  PubMed  Google Scholar 

  47. Makkar RR, et al. Intracoronary ALLogeneic heart STem cells to Achieve myocardial Regeneration (ALLSTAR): a randomized, placebo-controlled, double-blinded trial. Eur Heart J. 2020;41(36):3451–8 Findings from this trial hihglight safety of intra-coronary administration of cardiac progenitor cells in patients with ischemic cardiomyopathy. While no significant difference was noted in the scar size at 12 months follow-up, significant changed suggestive of improved left ventricular remodeling were noted with cellular therapy.

    Article  CAS  PubMed  Google Scholar 

  48. Davis DR. Cardiac stem cells in the post-Anversa era. Eur Heart J. 2019;40(13):1039–41.

    Article  PubMed  Google Scholar 

  49. Bergmann O. Clearing up the mist: cardiomyocyte renewal in human hearts. Eur Heart J. 2019;40(13):1037–8.

    Article  CAS  PubMed  Google Scholar 

  50. 2018 [cited 2021 March 9]; Statement on NHLBI decision to pause the CONCERT-HF trial]. Available from: https://www.nih.gov/news-events/news-releases/statement-nhlbi-decision-pause-concert-hf-trial.

  51. Borow KM, Yaroshinsky A, Greenberg B, Perin EC. Phase 3 DREAM-HF trial of mesenchymal precursor cells in chronic heart failure. Circ Res. 2019;125(3):265–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Preliminary results for DREAM-HF trial not yet published. 2020 [cited 2021 March 9]; Available from: http://www.pharmabiz.com/NewsDetails.aspx?aid=134180&sid=2.

  53. Fischer-Rasokat U, Assmus B, Seeger FH, Honold J, Leistner D, Fichtlscherer S, et al. A pilot trial to assess potential effects of selective intracoronary bone marrow-derived progenitor cell infusion in patients with nonischemic dilated cardiomyopathy: final 1-year results of the transplantation of progenitor cells and functional regeneration enhancement pilot trial in patients with nonischemic dilated cardiomyopathy. Circ Heart Fail. 2009;2(5):417–23.

    Article  CAS  PubMed  Google Scholar 

  54. Seth S, Narang R, Bhargava B, Ray R, Mohanty S, Gulati G, et al. Percutaneous intracoronary cellular cardiomyoplasty for nonischemic cardiomyopathy: clinical and histopathological results: the first-in-man ABCD (Autologous Bone Marrow Cells in Dilated Cardiomyopathy) trial. J Am Coll Cardiol. 2006;48(11):2350–1.

    Article  PubMed  Google Scholar 

  55. Surder D, et al. Intracoronary injection of bone marrow-derived mononuclear cells early or late after acute myocardial infarction: effects on global left ventricular function. Circulation. 2013;127(19):1968–79.

    Article  PubMed  Google Scholar 

  56. Menasche P, et al. Transplantation of human embryonic stem cell-derived cardiovascular progenitors for severe ischemic left ventricular dysfunction. J Am Coll Cardiol. 2018;71(4):429–38.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

DK, MJP, and MRM were involved in the creative planning and writing of this manuscript. Critical review and revision of the manuscript for accuracy and important intellectual content were performed by all authors.

Corresponding author

Correspondence to Mrudula R. Munagala.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topical Collection on Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kir, D., Patel, M.J. & Munagala, M.R. What Is the Status of Regenerative Therapy in Heart Failure?. Curr Cardiol Rep 23, 146 (2021). https://doi.org/10.1007/s11886-021-01575-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11886-021-01575-3

Keywords

Navigation