Skip to main content

Advertisement

Log in

Chronic Thromboembolic Pulmonary Hypertension: the Bench

  • Heart Failure (HJ Eisen, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Chronic thromboembolic pulmonary hypertension (CTEPH) is an uncommon complication of acute pulmonary embolism (PE), in which the red, platelet-rich thrombus does not resolve but forms into an organized yellow, fibrotic scar-like obstruction in the pulmonary vasculature. Here we review the pathobiology of CTEPH.

Recent Findings

Our current knowledge has predominantly been informed by studies of human samples and animal models that are inherently limited in their ability to recapitulate all aspects of the disease. These studies have identified alterations in platelet biology and inflammation in the formation of a scar-like thrombus that comprised endothelial cells, myofibroblasts, and immune cells, along with a small vessel pulmonary arterial hypertension-like vasculopathy.

Summary

The development of CTEPH-specific therapies is currently hindered by a limited knowledge of its pathobiology. The development of new CTEPH medical therapies will require new insights into its pathobiology that bridge the gap from bench to bedside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CEC:

Circulating endothelial cells

CRP:

C-reactive protein

CTEPH:

Chronic thromboembolic pulmonary hypertension

DVT:

Deep venous thrombosis

endoMT:

Endothelial-to-mesenchymal transition

EPC:

Endothelial progenitor cells

ET-1:

Endothelin-1

IVC:

Inferior Vena Cava

mPAP:

Mean pulmonary arterial pressure

MMP-9:

Matrix metalloproteinase-9

PA:

Pulmonary artery

PAH:

Pulmonary arterial hypertension

PE:

Pulmonary embolism

PEA:

Pulmonary endarterectomy

PECAM-1:

Platelet endothelial cell adhesion molecule-1

PH:

Pulmonary hypertension

PVR:

Pulmonary vascular resistance

RV:

Right ventricle

TGF-β:

Transforming growth factor β

TNF-α:

Tumor necrosis factor α

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rabinovitch M, Guignabert C, Humbert M, Nicolls MR. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res. 2014;115(1):165–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bonderman D, Wilkens H, Wakounig S, Schafers HJ, Jansa P, Lindner J, et al. Risk factors for chronic thromboembolic pulmonary hypertension. Eur Respir J. 2009;33(2):325–31.

    Article  CAS  PubMed  Google Scholar 

  3. Pepke-Zaba J, Delcroix M, Lang I, Mayer E, Jansa P, Ambroz D, et al. Chronic thromboembolic pulmonary hypertension (CTEPH): results from an international prospective registry. Circulation. 2011;124(18):1973–81.

    Article  PubMed  Google Scholar 

  4. Bonderman D, Jakowitsch J, Redwan B, Bergmeister H, Renner MK, Panzenbock H, et al. Role for staphylococci in misguided thrombus resolution of chronic thromboembolic pulmonary hypertension. Arterioscler Thromb Vasc Biol. 2008;28(4):678–84.

    Article  CAS  PubMed  Google Scholar 

  5. Quarck R, Nawrot T, Meyns B, Delcroix M. C-reactive protein: a new predictor of adverse outcome in pulmonary arterial hypertension. J Am Coll Cardiol. 2009;53(14):1211–8.

    Article  CAS  PubMed  Google Scholar 

  6. Langer F, Schramm R, Bauer M, Tscholl D, Kunihara T, Schafers HJ. Cytokine response to pulmonary thromboendarterectomy. Chest. 2004;126(1):135–41.

    Article  CAS  PubMed  Google Scholar 

  7. Zabini D, Heinemann A, Foris V, Nagaraj C, Nierlich P, Balint Z, et al. Comprehensive analysis of inflammatory markers in chronic thromboembolic pulmonary hypertension patients. Eur Respir J. 2014;44(4):951–62.

    Article  CAS  PubMed  Google Scholar 

  8. Soon E, Holmes A, Treacy CM, Barker L, Suntharalingam J, Southwood M, Nicklin P, Walker C, Budd D, Jenkins DP, et al. Inflammatory Cytokines Are Elevated In Patients With Operable Chronic Thromboembolic Pulmonary Hypertension And Predict Outcome Post-Endarterectomy. In A97. BIOMARKERS IN PULMONARY HYPERTENSION, (American Thoracic Society), 2011;A2287–A2287.

  9. Quarck R, Wynants M, Verbeken E, Meyns B, Delcroix M. Contribution of inflammation and impaired angiogenesis to the pathobiology of chronic thromboembolic pulmonary hypertension. Eur Respir J. 2015;46(2):431–43.

    Article  CAS  PubMed  Google Scholar 

  10. Kimura H, Okada O, Tanabe N, Tanaka Y, Terai M, Takiguchi Y, Masuda M, Nakajima N, Hiroshima K, Inadera H, et al. Plasma Monocyte Chemoattractant Protein-1 and Pulmonary Vascular Resistance in Chronic Thromboembolic Pulmonary Hypertension. Am. J. Respir. Crit. Care Med. 2001;164:319–324.

  11. Privratsky JR, Newman PJ. PECAM-1: regulator of endothelial junctional integrity. Cell Tissue Res. 2014;355(3):607–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kellermair J, Redwan B, Alias S, Jabkowski J, Panzenboeck A, Kellermair L, et al. Platelet endothelial cell adhesion molecule 1 deficiency misguides venous thrombus resolution. Blood. 2013;122(19):3376–84.

    Article  CAS  PubMed  Google Scholar 

  13. Alias S, Redwan B, Panzenbock A, Winter MP, Schubert U, Voswinckel R, et al. Defective angiogenesis delays thrombus resolution a potential pathogenetic mechanism underlying chronic thromboembolic pulmonary hypertension. Arterioscler Thromb Vasc Biol. 2014;34(4):810–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bernard J, Yi ES. Pulmonary thromboendarterectomy: a clinicopathologic study of 200 consecutive pulmonary thromboendarterectomy cases in one institution. Hum Pathol. 2007;38(6):871–7.

    Article  PubMed  Google Scholar 

  15. Bochenek ML, Rosinus NS, Lankeit M, Hobohm L, Bremmer F, Schutz E, et al. From thrombosis to fibrosis in chronic thromboembolic pulmonary hypertension. Thromb Haemost. 2017;117(4):769–83.

    Article  PubMed  Google Scholar 

  16. Maruoka M, Sakao S, Kantake M, Tanabe N, Kasahara Y, Kurosu K, et al. Characterization of myofibroblasts in chronic thromboembolic pulmonary hypertension. Int J Cardiol. 2012;159(2):119–27.

    Article  PubMed  Google Scholar 

  17. Bochenek ML, Leidinger C, Rosinus NS, Gogiraju R, Guth S, Hobohm L, et al. Activated endothelial TGFbeta1 signaling promotes venous thrombus nonresolution in mice via endothelin-1: potential role for chronic thromboembolic pulmonary hypertension. Circ Res. 2020;126(2):162–81 This study found that endothelial TGFβ1 signaling and endothelin-1 contribute to mesenchymal lineage conversion and thrombofibrosis that could be blocked by inhibiting ALK5 or endothelin receptors.

    Article  CAS  PubMed  Google Scholar 

  18. Lefrancais E, Ortiz-Munoz G, Caudrillier A, Mallavia B, Liu F, Sayah DM, et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature. 2017;544(7648):105–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kroll MH, Afshar-Kharghan V. Platelets in pulmonary vascular physiology and pathology. Pulm Circ. 2012;2(3):291–308.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Emad Y, Ragab Y, Ibrahim O, Saad A, Rasker JJ. Pattern of pulmonary vasculitis and major vascular involvement in Hughes-Stovin syndrome (HSS): brief report of eight cases. Clin Rheumatol. 2020;39(4):1223–8.

    Article  PubMed  Google Scholar 

  21. Lundy JB, Oh JS, Chung KK, Ritter JL, Gibb I, Nordmann GR, et al. Frequency and relevance of acute peritraumatic pulmonary thrombus diagnosed by computed tomographic imaging in combat casualties. J Trauma Acute Care Surg. 2013;75(2 Suppl 2):S215–20.

    Article  PubMed  Google Scholar 

  22. Frey MK, Alias S, Winter MP, Redwan B, Stubiger G, Panzenboeck A, et al. Splenectomy is modifying the vascular remodeling of thrombosis. J Am Heart Assoc. 2014;3(1):e000772.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zabini D, Nagaraj C, Stacher E, Lang IM, Nierlich P, Klepetko W, et al. Angiostatic factors in the pulmonary endarterectomy material from chronic thromboembolic pulmonary hypertension patients cause endothelial dysfunction. PLoS One. 2012;7(8):12.

    Article  Google Scholar 

  24. Yaoita N, Shirakawa R, Fukumoto Y, Sugimura K, Miyata S, Miura Y, et al. Platelets are highly activated in patients of chronic thromboembolic pulmonary hypertension. Arterioscler Thromb Vasc Biol. 2014;34(11):2486–94.

    Article  CAS  PubMed  Google Scholar 

  25. Remkova A, Simkova I, Valkovicova T. Platelet abnormalities in chronic thromboembolic pulmonary hypertension. Int J Clin Exp Med. 2015;8(6):9700–7.

    PubMed  PubMed Central  Google Scholar 

  26. Bennewitz MF, Jimenez MA, Vats R, Tutuncuoglu E, Jonassaint J, Kato GJ, et al. Lung vaso-occlusion in sickle cell disease mediated by arteriolar neutrophil-platelet microemboli. JCI Insight. 2017;2(1):e89761.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kim SH, Xia D, Kim SW, Holla V, Menter DG, Dubois RN. Human enhancer of filamentation 1 Is a mediator of hypoxia-inducible factor-1alpha-mediated migration in colorectal carcinoma cells. Cancer Res. 2010;70(10):4054–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alba GA, Samokhin AO, Wang RS, Zhang YY, Wertheim BM, Arons E, Greenfield EA, Lundberg Slingsby MH, Ceglowski JR, Haley KJ, Bowman FP, Yu YR, Haney JC, Eng G, Mitchell RN, Sheets A, Vargas SO, Seo S, Channick RN, Leary PJ, Rajagopal S, Loscalzo J, Battinelli EM, Maron BA. NEDD9 Is a Novel and Modifiable Mediator of Platelet-Endothelial Adhesion in the Pulmonary Circulation. Am J Respir Crit Care Med. 2021;203(12):1533–1545. https://doi.org/10.1164/rccm.202003-0719OC. This study used network medicine to discover a role for NEDD9 in a hypoxia-thrombosome network and blocking a NEDD9-P-Selectin interaction with an anti-NEDD9 antibody inhibited adhesion of activated platelets and decreased chronic pulmonary thromboembolic remodeling.

  29. Simonneau G, Torbicki A, Dorfmüller P, Kim N. The pathophysiology of chronic thromboembolic pulmonary hypertension. Eur Respir Rev. 2017;26(143):160112. https://doi.org/10.1183/16000617.0112-2016.

  30. Wagenvoort CA. Pathology of pulmonary thromboembolism. Chest. 1995;107(1 Suppl):10S–7S.

    Article  CAS  PubMed  Google Scholar 

  31. Moser KM, Bloor CM. Pulmonary vascular lesions occurring in patients with chronic major vessel thromboembolic pulmonary hypertension. Chest. 1993;103(3):685–92.

    Article  CAS  PubMed  Google Scholar 

  32. Dorfmuller P, Gunther S, Ghigna MR, Thomas de Montpreville V, Boulate D, Paul JF, et al. Microvascular disease in chronic thromboembolic pulmonary hypertension: a role for pulmonary veins and systemic vasculature. Eur Respir J. 2014;44(5):1275–88.

    Article  PubMed  Google Scholar 

  33. Matthews DT, Hemnes AR. Current concepts in the pathogenesis of chronic thromboembolic pulmonary hypertension. Pulm Circ. 2016;6(2):145–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lang IM, Dorfmuller P, Noordegraaf AV. The pathobiology of chronic thromboembolic pulmonary hypertension. Ann Am Thorac Soc. 2016;13:S215–S21.

    Article  PubMed  Google Scholar 

  35. Blauwet LA, Edwards WD, Tazelaar HD, McGregor CGA. Surgical pathology of pulmonary thromboendarterectomy: a study of 54 cases from 1990 to 2001. Hum Pathol. 2003;34(12):1290–8.

    Article  PubMed  Google Scholar 

  36. Sakao S, Hao H, Tanabe N, Kasahara Y, Kurosu K, Tatsumi K. Endothelial-like cells in chronic thromboembolic pulmonary hypertension: crosstalk with myofibroblast-like cells. Respir Res. 2011;12:16.

    Article  Google Scholar 

  37. Jujo T, Sakao S, Kantake M, Maruoka M, Tanabe N, Kasahara Y, et al. Characterization of sarcoma-like cells derived from endarterectomized tissues from patients with CTEPH and establishment of a mouse model of pulmonary artery intimal sarcoma. Int J Oncol. 2012;41(2):701–11.

    Article  PubMed  Google Scholar 

  38. Quarck R, Wynants M, Ronisz A, Sepulveda MR, Wuytack F, Van Raemdonck D, et al. Characterization of proximal pulmonary arterial cells from chronic thromboembolic pulmonary hypertension patients. Respir Res. 2012;13:10.

    Article  Google Scholar 

  39. Chibana H, Tahara N, Itaya N, Ishimatsu T, Sasaki M, Sasaki M, et al. Pulmonary artery dysfunction in chronic thromboembolic pulmonary hypertension. Int J Cardiol Heart Vasc. 2017;17:30–2.

    PubMed  PubMed Central  Google Scholar 

  40. Mercier O, Fadel E. Chronic thromboembolic pulmonary hypertension: animal models. Eur Respir J. 2013;41(5):1200–6.

    Article  PubMed  Google Scholar 

  41. Naito A, Sakao S, Lang IM, Voelkel NF, Jujo T, Ishida K, et al. Endothelial cells from pulmonary endarterectomy specimens possess a high angiogenic potential and express high levels of hepatocyte growth factor. BMC Pulm Med. 2018;18(1):197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bochenek, M.L., Saar, K., Marini, F., Gerhold-Ay, A., Huebner, N., Muenze, T., Mayer, E., Konstantinides, S. and Schaefer, K., 2017, August. Phenotypic specification of endothelial cells in chronic thromboembolic pulmonary hypertension. In Eurppean Heart Journal (Vol. 38, pp. 734–735). Great Clarendon St, Oxford Ox2 6dp, England: Oxford Univ Press.

  43. Wynants M, Vengethasamy L, Ronisz A, Meyns B, Delcroix M, Quarck R. NF-kappa B pathway is involved in CRP-induced effects on pulmonary arterial endothelial cells in chronic thromboembolic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2013;305(12):L934–L42.

    Article  CAS  PubMed  Google Scholar 

  44. Wynants M, Quarck R, Ronisz A, Alfaro-Moreno E, Van Raemdonck D, Meyns B, et al. Effects of C-reactive protein on human pulmonary vascular cells in chronic thromboembolic pulmonary hypertension. Eur Respir J. 2012;40(4):886–94.

    Article  CAS  PubMed  Google Scholar 

  45. Smadja DM, Mauge L, Sanchez O, Silvestre JS, Guerin C, Godier A, et al. Distinct patterns of circulating endothelial cells in pulmonary hypertension. Eur Respir J. 2010;36(6):1284–93.

    Article  CAS  PubMed  Google Scholar 

  46. Belik D, Tsang H, Wharton J, Howard L, Bernabeu C, Wojciak-Stothard B. Endothelium-derived microparticles from chronically thromboembolic pulmonary hypertensive patients facilitate endothelial angiogenesis. J Biomed Sci. 2016;23:4.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yamamoto K, Nishimura R, Kato F, Naito A, Suda R, Sekine A, et al. Protective role of endothelial progenitor cells stimulated by riociguat in chronic thromboembolic pulmonary hypertension. Int J Cardiol. 2020;299:263–70.

    Article  PubMed  Google Scholar 

  48. Firth AL, Yao W, Ogawa A, Madani MM, Lin GY, Yuan JXJ. Multipotent mesenchymal progenitor cells are present in endarterectomized tissues from patients with chronic thromboembolic pulmonary hypertension. Am J Physiol Cell Physiol. 2010;298(5):C1217–C25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jujo T, Sakao S, Tsukahara M, Kantake M, Maruoka M, Tanabe N, et al. The role of matrix metalloproteinase in the intimal sarcoma-like cells derived from endarterectomized tissues from a chronic thromboembolic pulmonary hypertension patient. PLoS One. 2014;9(1):e87489.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chuang HM, Chen YS, Harn HJ. The Versatile Role of Matrix Metalloproteinase for the Diverse Results of Fibrosis Treatment. Molecules. 2019;24(22):4188. https://doi.org/10.3390/molecules24224188.

  51. Heath D, Edwards JE. The pathology of hypertensive pulmonary vascular disease; a description of six grades of structural changes in the pulmonary arteries with special reference to congenital cardiac septal defects. Circulation. 1958;18(4 Part 1):533–47.

    Article  CAS  PubMed  Google Scholar 

  52. Boulate D, Perros F, Dorfmuller P, Arthur-Ataam J, Guihaire J, Lamrani L, et al. Pulmonary microvascular lesions regress in reperfused chronic thromboembolic pulmonary hypertension. J Heart Lung Transplant. 2015;34(3):457–67.

    Article  PubMed  Google Scholar 

  53. Sadushi-Kolici R, Jansa P, Kopec G, Torbicki A, Skoro-Sajer N, Campean IA, Halank M, Simkova I, Karlocai K, Steringer-Mascherbauer R, Samarzija M, Salobir B, Klepetko W, Lindner J, Lang IM. Subcutaneous treprostinil for the treatment of severe non-operable chronic thromboembolic pulmonary hypertension (CTREPH): a double-blind, phase 3, randomised controlled trial. Lancet Respir Med. 2019;7(3):239–248. https://doi.org/10.1016/S2213-2600(18)30367-9.

  54. Ghofrani HA, D'Armini AM, Grimminger F, Hoeper MM, Jansa P, Kim NH, et al. Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N Engl J Med. 2013;369(4):319–29.

    Article  CAS  PubMed  Google Scholar 

  55. Ghofrani HA, Simonneau G, D'Armini AM, Fedullo P, Howard LS, Jais X, et al. Macitentan for the treatment of inoperable chronic thromboembolic pulmonary hypertension (MERIT-1): results from the multicentre, phase 2, randomised, double-blind, placebo-controlled study. Lancet Respir Med. 2017;5(10):785–94.

    Article  CAS  PubMed  Google Scholar 

  56. Flight SM, Masci PP, Lavin MF, Gaffney PJ. Resistance of porcine blood clots to lysis relates to poor activation of porcine plasminogen by tissue plasminogen activator. Blood Coagul Fibrinolysis. 2006;17(5):417–20.

    Article  CAS  PubMed  Google Scholar 

  57. Diaz JA, Saha P, Cooley B, Palmer OR, Grover SP, Mackman N, et al. Choosing a mouse model of venous thrombosis. Arterioscler Thromb Vasc Biol. 2019;39(3):311–8 This consensus assessment provides an overview of current mouse models of venous thrombosis to help investigators choose and standardize venous thrombosis models for their research.

    Article  CAS  PubMed  Google Scholar 

  58. Evans CE, Grover SP, Humphries J, Saha P, Patel AP, Patel AS, et al. Antiangiogenic therapy inhibits venous thrombus resolution. Arterioscler Thromb Vasc Biol. 2014;34(3):565–70.

    Article  CAS  PubMed  Google Scholar 

  59. Waltham M, Burnand K, Fenske C, Modarai B, Humphries J, Smith A. Vascular endothelial growth factor naked DNA gene transfer enhances thrombus recanalization and resolution. J Vasc Surg. 2005;42(6):1183–9.

    Article  PubMed  Google Scholar 

  60. Modarai B, Humphries J, Burnand KG, Gossage JA, Waltham M, Wadoodi A, et al. Adenovirus-mediated VEGF gene therapy enhances venous thrombus recanalization and resolution. Arterioscler Thromb Vasc Biol. 2008;28(10):1753–9.

    Article  CAS  PubMed  Google Scholar 

  61. Mulchrone A, Kellihan HB, Forouzan O, Hacker TA, Bates ML, Francois CJ, Chesler NC. A Large Animal Model of Right Ventricular Failure due to Chronic Thromboembolic Pulmonary Hypertension: A Focus on Function. Front Cardiovasc Med. 2019;5:189. https://doi.org/10.3389/fcvm.2018.00189.

  62. Stam K, van Duin RWB, Uitterdijk A, Krabbendam-Peters I, Sorop O, Danser AHJ, et al. Pulmonary microvascular remodeling in chronic thrombo-embolic pulmonary hypertension. Am J Phys Lung Cell Mol Phys. 2018;315:L951–64.

    CAS  Google Scholar 

  63. Neto-Neves EM, Brown MB, Zaretskaia MV, Rezania S, Goodwill AG, McCarthy BP, et al. Chronic embolic pulmonary hypertension caused by pulmonary embolism and vascular endothelial growth factor inhibition. Am J Pathol. 2017;187(4):700–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mercier O, Tivane A, Dorfmuller P, de Perrot M, Raoux F, Decante B, et al. Piglet model of chronic pulmonary hypertension. Pulm Circ. 2013;3(4):908–15.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Waters CM. Flow-induced modulation of the permeability of endothelial cells cultured on microcarrier beads. J Cell Physiol. 1996;168(2):403–11.

    Article  CAS  PubMed  Google Scholar 

  66. Heath D, Donald DE, Edwards JE. Pulmonary vascular changes in a dog after aortopulmonary anastomosis for four years. Br Heart J. 1959;21(2):187–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Aguero J, Ishikawa K, Fish KM, Hammoudi N, Hadri L, Garcia-Alvarez A, et al. Combination proximal pulmonary artery coiling and distal embolization induces chronic elevations in pulmonary artery pressure in Swine. PLoS One. 2015;10(4):e0124526.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Marsh JJ, Konopka RG, Lang IM, Wang HY, Pedersen C, Chiles P, et al. Suppression of thrombolysis in a canine model of pulmonary embolism. Circulation. 1994;90(6):3091–7.

    Article  CAS  PubMed  Google Scholar 

  69. Moser KM, Cantor JP, Olman M, Villespin I, Graif JL, Konopka R, et al. Chronic pulmonary thromboembolism in dogs treated with tranexamic acid. Circulation. 1991;83(4):1371–9.

    Article  CAS  PubMed  Google Scholar 

  70. Deng C, Wu D, Yang M, Chen Y, Wang C, Zhong Z, et al. Expression of tissue factor and forkhead box transcription factor O-1 in a rat model for chronic thromboembolic pulmonary hypertension. J Thromb Thrombolysis. 2016;42(4):520–8.

    Article  CAS  PubMed  Google Scholar 

  71. Quarck R, Wagenaar A, Tielemans B, Perros F, Dorfmuller P, Belge C, Delcroix M, 2019. Chronic Thromboembolic Pulmonary Hypertension Caused by Combination of Repeated Clot Embolization With Inhibition of Angiogenesis in Rabbits. Circulation, 2019;140(1):A12259–A12259

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudarshan Rajagopal.

Ethics declarations

Conflict of Interest

Dr. Tapson reports grants from Bayer, and grants and personal fees from Janssen and Actelion, outside the submitted work.

Dr. Maron reports personal fees from Actelion, outside the submitted work. In addition, Dr. Maron has a patent US patent 9,605,047 issued, a patent US pending patent PCT/US2019/059890 pending, and patent applications 62475955 and 029672 pending.

Dr. Rajagopal reports grants and personal fees from Janssen and United Therapeutics, and personal fees from Altavant, Apie Therapeutics, Bayer, Insmed, and Liquidia Technologies, outside the submitted work. In addition, Dr. Rajagopal has a patent US Patent 62/673,175. “Dynamic 129Xe Gas Exchange Spectroscopy” licensed to Polarean Corporation.

The other authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alba, G.A., Atri, D., Darbha, S. et al. Chronic Thromboembolic Pulmonary Hypertension: the Bench. Curr Cardiol Rep 23, 141 (2021). https://doi.org/10.1007/s11886-021-01572-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11886-021-01572-6

Keywords

Navigation