Skip to main content
Log in

Important Considerations in Pediatric Heart Failure

  • Heart Failure (HJ Eisen, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The goal of this paper is to provide an overview of contemporary knowledge specific to the causes, management, and outcome of heart failure in children.

Recent Findings

While recently there have been subtle improvements in heart failure outcomes in children, these improvements lag significantly behind that of adults. There is a growing body of literature suggesting that pediatric heart failure is a unique disease process with age- and disease-specific myocardial adaptations. In addition, the heterogenous etiologies of heart failure in children contribute to differential response to therapies and challenge the ability to obtain meaningful results from prospective clinical trials.

Summary

Consideration of novel clinical trial designs with achievable but clinically relevant endpoints and focused study of the mechanisms underlying pediatric heart failure secondary to cardiomyopathies and structural heart disease are essential if we hope to advance care and identify targeted and effective therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Towbin J, Lowe A, Colan S, et al. Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA. 2006;296(15):1867–76.

    Article  CAS  PubMed  Google Scholar 

  2. Wilkinson J, Landy D, Colan S, et al. The pediatric cardiomyopathy registry and heart failure: key results form the first 15 years. Heart Fail Clin. 2010;6:401–13.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Das B. Current state of pediatric heart failure. Children (Basel). 2018;5(7):88.

  4. • Shaddy R, George A, Jaecklin T. Systematic literature review on the incidence and prevalence of heart failure in children and adolescents. Pediatr Cardiol. 2018;39(3):415–36 This review provides important context on the incidence, prevalence, and outcome of pediatric heart failure. Importantly, all causes of heart failure in children (e.g., cardiomyopathy, congenital heart disease) are included in this review.

    Article  PubMed  Google Scholar 

  5. WHO. Cardiac failure in children. WHO; 2008.

  6. Andrews R, Fenton M, Ridout D, Burch M. New-onset heart failure due to heart muscle disease in childhood: a prospective study in the United Kingdom and Ireland. Circulation. 117:79–84.

  7. Neumann T, Biermann J, Erbel R, Neumann A, Wasem J, Ertl G, et al. Heart failure: the commonest reason for hospital admission in Germany: medical and economic perspectives. Dtsch Arztebl Int. 2009;106:269–75.

    PubMed  PubMed Central  Google Scholar 

  8. Schmidt S, Hendricks V, Griebenow R, Riedel R. Demographic change and its impact on the healthcare budget for heart failure inpatients in Germany during 1995-2025. Herz. 2013;38:862–7.

    Article  CAS  PubMed  Google Scholar 

  9. Tseng C. The age- and sex-specific incidence and medical expenses of heart failure hospitalization in 2005 in Taiwan: a study using data from the National Health Insurance. J Am Geriatr Soc. 58:611–3.

  10. Kirk R, Dipchand A, Rosenthal D. The International Society for Heart and Lung Transplantation guidelines for the management of pediatric heart failure: executive summary. J Heart Lung Transplant. 2014;33(9):888–909.

    Article  PubMed  Google Scholar 

  11. Kantor P, Lougheed J, Danecea A. Presentation, diagnosis, and medical management of heart failure in children: Canadian Cariovascular Society guidelines. Can J Cardiol. 29:1535–52.

  12. Singh R, Canter C, Shi L. Survival without cardiac transplantation among children with dilated cardiomyopathy. J Am Coll Cardiol. 2017;70(21):2663–73.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wittlieb-Weber C, Lin K, Zaoutis T, O’Connor M. Pediatric versus adult cardiomyopathy and heart failure-related hospitalizations: a value-based analysis. J Card Fail. 2015;21(1):76–82.

    Article  PubMed  Google Scholar 

  14. Rossano J, Shaddy R. Update on pharmacological heart failure therapies in children: do adult medications work in children and if not, why not? Circulation. 2014;129:607–12.

    Article  PubMed  Google Scholar 

  15. Chatfield K, Sparagna G, Sucharov C. Dysregulation of cardiolipin biosynthesis in pediatric heart failure. J Mol Cell Cardiol. 2014;74:251–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Garcia A, Nakano S, Karimpour F. Phosphodiesterase-5 is elevated in failing single ventricle myocardium and affects cardiomyocyte remodeling in vitro. Circ Heart Fail. 2018;11(9):e004571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miyamoto S. Beta-adrenergic adaptation in pediatric idiopathic dilated cardiomyopathy. Eur Heart J. 2014;35(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  18. Nakano S, Miyamoto S, Movsesian M. Age-related differences in phosphodiesterase activity and effects of chronic phosphodiesterase inhibition in idiopathic dilated cardiomyopathy. Circ Heart Fail. 8(1):57–63.

  19. Miyamoto S, Stauffer B, Polk J, et al. Gene expression and beta-adrenergic signaling are altered in hypoplastic left heart syndrome. J Heart Lung Transplant. 2014;33(8):785–93.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Patel M, Mohan J, Schneider C, Bajpai G. Pediatric and adult dilated cardiomyopathy represent distinct pathological entities. JCI Insight. 2017;2(14):e94382.

    Article  PubMed Central  Google Scholar 

  21. •• Tatman P, Woulfe K, Karimpour F. Pediatric dilated cardiomyopathy hearts display a unique gene expression profile. JCI Insight. 2017;2(14):e94249 This paper is the first to report a comprehensive transcriptome analysis comparing adult and pediatric DCM hearts. There are distinct differences in the gene expression profile between children and adults with idiopathic DCM, suggesting that the mechanisms of heart failure may differ based on age.

    Article  PubMed Central  Google Scholar 

  22. Lipshultz S, Law Y, Asante-Korang A. Cardiomyopathy in children: classification and diagnosis: a scientific statement from the American Heart Association. Circulation. 2019;140(1):e9–68.

    Article  PubMed  Google Scholar 

  23. Herman D, Lam L, Taylor M. Truncations of titin causing dilated cardiomyopathy. NEJM. 2012;366:619–28.

    Article  CAS  PubMed  Google Scholar 

  24. Gautel M. Cytoskeletal protein kinases: titin an its relations in mechanosensing. Pflugers Arch. 2011;462:119–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Puckelwartz M, Kessler E, Kim G. Nesprin-1 mutations in human and murine cardiomyopathy. Mol Cell Cardiol. 2010;48:600–8.

    Article  CAS  Google Scholar 

  26. Weintraub R, Semsarian C, Macdonald P. Dilated cardiomyopathy. Lancet. 2017;390(10092):400–14.

    Article  CAS  PubMed  Google Scholar 

  27. Gagliardi M, Fierabracci A, Pilati M. The impact of specific viruses on clinical outcome in children presenting with acute heart failure. Int J Mol Sci. 2016;17:486.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Klugman D, Berger J, Sable C. Pediatric patients hospitalize with myocarditis: a multi-institutional analysis. Pediatr Cardiol. 2010;31:222–8.

    Article  PubMed  Google Scholar 

  29. Trachtenberg B, Landy D, Franco V. Anthracycline-associated cardiotoxicity in survivors of childhood cancer. Pediatr Cardiol. 2011;32:342–53.

    Article  PubMed  Google Scholar 

  30. Meyers D, Basha H, Koenig M. Mitochondrial cardiomyopathy: pathophysiology, diagnosis, and management. Tex Heart Inst J. 2013;40(4):385–94.

    PubMed  PubMed Central  Google Scholar 

  31. Wilkinson J, Landy D, Colan S. The pediatric cardiomyopathy registry and heart failure: key results from the first 15 years. Heart Fail Clin. 2010;6(4):401–13.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cavanaugh, Miyamoto S, da Cruz E, Pietra B. Predicting recovery: successful explant of a ventricular assist device in a child with dilated cardiomyopathy. J Heart Lung Transplant. 2010;29(1):105–8.

    Article  PubMed  Google Scholar 

  33. Everitt M, Sleeper L, Lu M. Recovery of echocardiographic function in children with idopathic dilated cardiomyopathy: results from the pediatric cardiomyopathy registry. J Am Coll Cardiol. 2014;63(14):1405–13.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mitchell F, Prasad S, Greil G. Cardiovascular magnetic resonance: diagnostic utility and specific considerations in the pediatric population. World J Clin Pediatr. 2016;5(1):1–15.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kindel S, Miller E, Gupta R. Pediatric cardiomyopathy: importance of genetic and metabolic evaluation. J Card Fail. 2012;18:396–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hershberger R, Cowan J, Morales A. Progress with genetic cardiomyopathies. Circ Heart Fail. 2009;2:253–61.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Murphy S, Anderson J, Kapplinger J. Evaluation of the Mayo Clinic phenotype-based genotype predictor score in patients with clinically diagnosed hypertrophic cardiomyopathy. J Cardiovasc Transl Res. 2016;9(2):153–61.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shaddy R, Boucek M, Hsu D. Carvedilol for children and adolescents with heart failure: a randomized controlled trial. JAMA. 2007;298(10):1171–9.

    Article  PubMed  Google Scholar 

  39. Packer M, Carver J, Rodeheffer R. Effect of oral milrinone on mortality in severe chronic heart failure. NEJM. 1991;325:1468–75.

    Article  CAS  PubMed  Google Scholar 

  40. Berg A, Snell L, Mahle W. Home inotropic therapy in children. J Heart Lung Transplant. 2007;26(5):453–7.

    Article  PubMed  Google Scholar 

  41. Price J, Towbin J, Dreyer W, Moffett B, Kertesz N, Clunie S. Outpatient continuous parenteral inotropic therapy as bridge to transplantation in children with advanced heart failure. J Card Fail. 2006;12(2):139–43.

    Article  PubMed  Google Scholar 

  42. Fraser C, Chacon-Portillo M, Zea-Vera R, John R. Ventricular assist device support: single pediatric institution experience over two decades. Ann Thorac Surg. 2019;107(3):829–36.

    Article  PubMed  Google Scholar 

  43. Peng D, Rosenthal D, Zafar F, Smyth L, VanderPluym C, Lorts A. Collaboration and new data in ACTION: a learning health care system to improve pediatric heart failure and ventricular assist device outcomes. Transl Pediatr. 2019;8(4):348–55.

    Article  Google Scholar 

  44. Stout K, Broberg C, Book W, Cecchin F. Chronic heart failure in congential heart disease: a scientific statement from the American Heart Association. Circulation. 2016;133(8):770–801.

    Article  PubMed  Google Scholar 

  45. Piran S, Veldtman G, Siu S, Webb G, Liu P. Heart failure and ventricular dysfunction in patients with single or systemic right ventricles. Circulation. 2002;105(10):1189–94.

    Article  PubMed  Google Scholar 

  46. Goldberg D, Zak V, Goldstein B, Schumacher K. Results of the FUEL trial. Circulation. 2020;141(8):641–51.

    Article  PubMed  Google Scholar 

  47. Khairy P, Landzberg M, Gatzoulis M. Transvenous pacing leads and systemic thromboemboli in patients ith intracardiac shunts: a multicenter study. Circulation. 2006;113(20):2391–7.

    Article  PubMed  Google Scholar 

  48. Berul C, Van Hare G, Kertesz N. Results of a multicenter retrospective implantable cardioverter-defibrillator registry of pediatric and congenital heart disease patients. JACC. 2008;51(17):1685–91.

    Article  PubMed  Google Scholar 

  49. Miller J, Lancaster T, Callahan C. An overview of mechanical circulatory support in single-ventricle patients. Transl Pediatr. 2018;7(2):151–61.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Griselli M, Sinha R, Perri G, Adachi I. Mechanical circulatory support for single ventricle failure. Front Cardiovasc Med. 2018;5:115.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rossano J, Kim J, Decker J. Prevalence, morbidity, and mortality of heart failure-related hospitalizations in children in the United States: a population-based study. J Card Fail. 2012;18(6):459–70.

    Article  PubMed  Google Scholar 

  52. Khush K, Cherikh W, Chambers D. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: thirty-sixth adult heart transplantation report - 2019; focus theme: donor and recipient size match. J Heart Lung Transplant. 2019;38(10):1056–66.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Miyamoto S, Karimpour F, Peterson V. Circulating microRNA as a biomarker for recovery in pediatric dilated cardiomyopathy. J Heart Lung Transplant. 2015;34(5):724–33.

    Article  PubMed  Google Scholar 

  54. Good M, McElroy S, Berger J, Wynn J. Name and characteristics of national institutes of health R01-funded pediatric physician-scientists: hoep and challenges for the vanishing pediatric physician-scientists. JAMA Pediatr. 2018;172(3):297–9.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hsu D, Zak V, Mahony L. Enalapril in infants with single ventricle: results of a multicenter randomiozed trial. Circulation. 2010;122:333–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. United States Food and Drug Administration Pediatric Product Development. https://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/ucm049867.htm. Accessed April 14, 2020

  57. European Medicines Agency Paediatric Regulation. http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/document_listing/document_listing_000068.jsp&mid=WC0b01ac0580925c45. Accessed April 14, 2020

  58. Institute of Medicine (US) Forum on Drug Discovery, Development, and Translation. Addressing the barriers to pediatric drug development: workshop summary.

  59. Signorovitch J, Ayyagari R, Kakkis E. The randomized blind start trial: evaluation of a new study design for assessing clinical out-comes in rare and heterogeneous patient populations. Value Health. 2014;17(7):A580.

  60. Torok R, Li J, Kannankeril J. Recommendations to enhance pediatric cardiovascular drug development: report of a multi-stakeholder think tank. JAHA. 2018;7(4).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shelley D. Miyamoto.

Ethics declarations

Conflict of Interest

Shelley D. Miyamoto is scientific co-founder and shareholder in CoramiR Biomedical, Inc. In addition, Dr. Miyamoto has a patent CU2650H licensed to University of Colorado, a patent CU1250H licensed to University of Colorado, and a patent CU3250H pending to University of Colorado. The other authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with animal subjects performed by any of the authors. Informed consent was obtained from all individual participants included in the human studies reported in this article that were performed by the authors (SDM, AMG).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wall, J.B., Garcia, A.M., Jacobsen, R.M. et al. Important Considerations in Pediatric Heart Failure. Curr Cardiol Rep 22, 141 (2020). https://doi.org/10.1007/s11886-020-01383-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-020-01383-1

Keywords

Navigation