Skip to main content
Log in

Current Role of the Total Artificial Heart in the Management of Advanced Heart Failure

  • Heart Failure (HJ Eisen, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

The total artificial heart (TAH) is a form of mechanical circulatory support that involves resection of the native ventricles followed by placement of a device that can restore total pulmonary and systemic flow. Given the increasing burden of congestive heart failure and cardiovascular disease, the number of people in need of cardiac replacement therapy will continue to grow. Despite aggressive efforts to expand the donor pool, the number of heart transplants in the United States (US) has plateaued at less than 3000 per year. In addition, there is increasing recognition of the long-term complications of current generation left ventricular assist devices such as progressive aortic insufficiency, complications related to blood trauma, and both early and delayed right ventricular failure. These factors may serve to expand the role of the TAH in the treatment of patients with end-stage heart failure particularly if new generation devices are developed that are durable, have an improved safety profile, and are totally implantable.

Purpose of Review

To review the role and current evidence of the use of the TAH in the management of advanced heart failure and discuss development of recent TAHs that may have an impact on the field in the near future.

Recent Findings

Many patients that receive a heart transplant are bridged with a mechanical support device, most commonly a left ventricular assist device (LVAD). However, there is a small subset of patients with profound biventricular (BV) failure or structural abnormalities that preclude LVAD placement, who will require support with a biventricular assist device (BiVAD) or TAH. There are numerous studies showing the efficacy of the TAH in bridging to transplantation. Also, recent studies have shown equal rates of bridging to transplantation between patients receiving a TAH compared to a BiVAD. However, BiVAD support has a higher incidence of stroke in addition to complications related to the native heart such as arrhythmias and valve dysfunction. Currently, there are multiple new generation artificial hearts in both preclinical development and in clinical trials for both bridge to transplant and destination therapy.

Summary

TAH have been shown to be effective for circulatory support in select patients with end-stage heart failure. Current LVADs are associated with significant long-term complications related to retention of the native heart and pump design. Many of these complications may be addressed by the increased use of cardiac replacement therapy, i.e., total artificial hearts. Multiple generations of both pulsatile and advanced design continuous flow TAH are under development which have the potential to expand the role of TAHs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Simon MA, Bachman TN, Watson J, Baldwin JT, Wagner WR, Borovetz HS. Current and future considerations in the use of mechanical circulatory support devices: an update, 2008–2018. Annu Rev Biomed Eng. 2019;21:33–60. https://doi.org/10.1146/annurev-bioeng-062117-121120.

    Article  CAS  PubMed  Google Scholar 

  2. Kittleson MM, Kobashigawa JA. Cardiac transplantation: current outcomes and contemporary controversies. JACC Heart Fail. 2017;5(12):857–68. https://doi.org/10.1016/j.jchf.2017.08.021.

    Article  PubMed  Google Scholar 

  3. Yancy CW, Mariell J, Bozkurt B, Butler J, Casey DE, Drazner MH, et al. ACCF/AHA guideline for the Management of Heart Failure a Report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. JACC. 2013;2013:62(16). https://doi.org/10.1016/j.jacc.2013.05.019.

    Article  Google Scholar 

  4. Organ Procurement and Transplantation Network. In: OPTN. https://optn.transplant.hrsa.gov/data/view-data-reports/national-data/#. Accessed 21 Jun 2019.

  5. Colvin M, Smith JM, Hadley N, Skeans MA, Uccellini K, Lehman R, et al. 2017 Annual data report: heart. Am J Transplant. 2019;19(52). https://doi.org/10.1111/ajt.15278.

    Article  Google Scholar 

  6. Kormos RL, Cowger J, Pagani FD, Teuteberg JJ, Goldstein DJ, Jacobs JP, et al. The Society of Thoracic Surgeons Intermacs database annual report: evolving indications, outcomes, and scientific partnerships. Ann Thorac Surg. 2019;107(2):341–53. https://doi.org/10.1016/j.athoracsur.2018.11.011.

    Article  Google Scholar 

  7. Bartoli CR, Dowling RD. The future of adult cardiac assist devices: novel systems and mechanical circulatory support strategies. Cardiol Clin. 2011;29(4):559–82. https://doi.org/10.1016/j.ccl.2011.08.013.

    Article  PubMed  PubMed Central  Google Scholar 

  8. • Bartoli CR, Dowling RD. The Next Wave of Mechanical Circulatory Support Devices. Card Interv Today. 2019;13(1):53–9. Highlights newest mechanical circulatory support devices on the horizon.

    Google Scholar 

  9. Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345:1435–43. https://doi.org/10.1056/NEJMoa012175.

    Article  CAS  PubMed  Google Scholar 

  10. Mazzei M, Keshavamurthy S, Kashem A, Toyoda Y. Heart transplantation in the era of the left ventricular assist devices. IntechOpen. 2018. https://doi.org/10.5772/intechopen.76935.

    Google Scholar 

  11. Drakos SG, Janicki L, Horne BD, Kfoury AG, Reid BB, Clayson S, et al. Risk factors predictive of right ventricular failure after left ventricular assist device implantation. J Am Coll Cardiol. 2010;105(7):1030–5. https://doi.org/10.1016/j.amjcard.2009.11.026.

    Article  Google Scholar 

  12. Fitzpatrick JR, Frederick JR, Hsu VM, Kozin ED, O’Hara ML, Howell E, et al. Risk score derived from pre-operative data analysis predicts the need for biventricular mechanical circulatory support. J Heart Lung Transplant. 2008;27(12):1286–92. https://doi.org/10.1016/j.healun.2008.09.006.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kavarana MN, Pessin-Minsley MS, Urtecho J, Catanese KA, Flannery M, Oz MC, et al. Right ventricular dysfunction and organ failure in left ventricular assist device recipients: a continuing problem. Ann Thorac Surg. 2002;73(3):745–50. https://doi.org/10.1016/S0003-4975(01)03406-3.

    Article  PubMed  Google Scholar 

  14. Rame JE, Teuteberg JJ, Birks EJ, Rogers JG, Acker MA, Birati EY, et al. An analysis of early versus late right heart failure with an Intrapericardial continuous flow LVAD. J Heart Lung Transplant. 2015;34(4):S113–4. https://doi.org/10.1016/j.healun.2015.01.301.

    Article  Google Scholar 

  15. Takeda K, Takayama H, Colombo PC, Jorde UP, Yuzefpolskaya M, Fukuhara S, et al. Late right heart failure during support with continuous-flow left ventricular assist devices adversely affects post-transplant outcome. J Heart Lung Transplant. 2015;34(5):667–74. https://doi.org/10.1016/j.healun.2014.10.005.

    Article  PubMed  Google Scholar 

  16. Kirsch M, Mazzucotelli JP, Roussel JC, Bouchot O, N’Loga J, Leprince P, et al. Survival after biventricular mechanical circulatory support: does the type of device matter? J Heart Lung Transplant. 2012;31(5):501–8. https://doi.org/10.1016/j.healun.2011.11.024.

    Article  PubMed  Google Scholar 

  17. Kirklin JK, Naftel DC, Kormos RL, Stevenson LW, Pagani FD, Miller MA, et al. The fourth INTERMACS annual report: 4,000 implants and counting. J Heart Lung Transplant. 2012;31(2):117–26. https://doi.org/10.1016/j.healun.2011.12.001.

    Article  PubMed  Google Scholar 

  18. Gerosa G, Scuri S, Iop L, Torregrossa G. Present and future perspectives on total artificial hearts. Ann Cardiothorac Surg. 2014;3(6):595–602. https://doi.org/10.3978/j.issn.2225-319X.2014.09.05.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cook JA, Shah KB, Quader MA, Cooke RH, Kasirajan V, et al. The total artificial heart. J Thorac Dis. 2015;7(12):2172–80. https://doi.org/10.3978/j.issn.2072-1439.2015.10.70.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Copeland JG, Smith RG, Arabia FA, Nolan PE, Sethi GK, Tsau PH, et al. Cardiac replacement with a Total artificial heart as a bridge to transplantation. N Engl J Med. 2004;351:859–67. https://doi.org/10.1056/NEJMoa040186.

    Article  CAS  PubMed  Google Scholar 

  21. Patil NP, Sabashnikov A, Mohite PN, Garcia D, Weymann A, Zych B, et al. De novo aortic regurgitation after continuous-flow left ventricular assist device implantation. Ann Thorac Surg. 2014;98(3):850–7. https://doi.org/10.1016/j.athoracsur.2014.05.030.

    Article  PubMed  Google Scholar 

  22. Martina JR, Schipper ME, de Jonge N, Ramjankhan F, de Weger RA, Lahpor JR, et al. Analysis of aortic valve commissural fusion after support with continuous-flow left ventricular assist device. Interact Cardiovasc Thorac Surg. 2013;17(4):616–24. https://doi.org/10.1093/icvts/ivt263.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cowger J, Pagani FD, Haft JW, Romano MA, Aaronson KD, Kolias TJ. The development of aortic insufficiency in left ventricular assist device-supported patients. Circ Heart Fail. 2010;3(6):668–74. https://doi.org/10.1161/CIRCHEARTFAILURE.109.917765.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Aggarwal A, Raghuvir R, Eryazici P, Macaluso G, Sharma P, Blair C, et al. The development of aortic insufficiency in continuous-flow left ventricular assist device–supported patients. Ann Thorac Surg. 2013;95(2):493–8. https://doi.org/10.1016/j.athoracsur.2012.09.020.

    Article  PubMed  Google Scholar 

  25. • Truby LK, Garan AR, Givens RC, Wayda B, Takeda K, Yuzefpolskaya M, et al. Aortic insufficiency during contemporary left ventricular assist device support: analysis of the INTERMACS registry. JACC Heart Fail. 2018;6(11):951–60. https://doi.org/10.1016/j.jchf.2018.07.012. Highlights significance of aortic insufficiency following LVAD placement.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Soleimani B, Haouzi A, Manoskey A, Stephenson ER, El-Banayosy A, Pae WE. Development of aortic insufficiency in patients supported with continuous flow left ventricular assist devices. ASAIO J. 2012;58(4):326–9. https://doi.org/10.1097/MAT.0b013e318251cfff.

    Article  PubMed  Google Scholar 

  27. • Arabia FA, Cantor RS, Koehl DA, Gregoric I, Moriguchi JD, Esmailian F, et al. Interagency registry for mechanically assisted circulatory support report on the total artificial heart. J Heart Lung Transplant. 2018;37(11):1304–12. https://doi.org/10.1016/j.healun.2018.04.004. Highlights the outcomes and experience with the TAH.

    Article  PubMed  Google Scholar 

  28. Feldman D, Pamboukian SV, Teuteberg JJ, Birks E, Lietz K, Moore SA, et al. The 2013 International Society for Heart and Lung Transplantation guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant. 2013;32(2):157–87. https://doi.org/10.1016/j.healun.2012.09.013.

    Article  PubMed  Google Scholar 

  29. • Shah KB, Thanavaro KL, Tang DG, Quader MA, Mankad AK, Tchoukina I, et al. Impact of INTERMACS profile on clinical outcomes for patients supported with the Total artificial heart. J Card Fail. 2016;22(11):913–20. https://doi.org/10.1016/j.cardfail.2016.04.016. Highlights the outcomes and experience with the TAH.

    Article  PubMed  Google Scholar 

  30. Kalya A, Jaroszewski D, Parjao O, Scott R, Gopalan R, Kasper D, et al. Role of total artificial heart in the management of heart transplant rejection and retransplantation: case report and review. Clin Transpl. 2013;27(4):E348–50. https://doi.org/10.1111/ctr.12146.

    Article  Google Scholar 

  31. SynCardia Systems, LLC. (2019). SynCardia 70cc TAH-t for Destination Therapy (DT) (RA-540). ClinicalTrials.gov Identifier: NCT00532493. Retrieved from https://clinicaltrials.gov/ct2/show/NCT02232659.

  32. SynCardia Systems, LLC. (2019). Syncardia 50cc TAH-t as a Bridge to Transplant. ClinicalTrials.gov Identifier: NCT02459054. Retrieved from https://clinicaltrials.gov/ct2/show/NCT02459054.

  33. Wells D, Villa CR, Morales DL. The 50/50 cc Total artificial heart trial: extending the benefits of the Total artificial heart to underserved populations. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2017;20:16–9. https://doi.org/10.1053/j.pcsu.2016.09.004.

    Article  PubMed  Google Scholar 

  34. Thanavaro KL, Tang D, Kasirajan V, Shah KB. Clinical indications for implantation of the Total artificial heart. ASAIO J. 2014;60(5):594–6. https://doi.org/10.1097/MAT.0000000000000111.

    Article  PubMed  Google Scholar 

  35. Copeland JG, Copeland H, Gustafson M, Mineburg N, Covington D, Smith RG, et al. Experience with more than 100 total artificial heart implants. J Thorac Cardiovasc Surg. 2012;143(3):727–34. https://doi.org/10.1016/j.jtcvs.2011.12.002.

    Article  PubMed  Google Scholar 

  36. Cheng A, Trivedi JR, Van Berkel VH, Massey HT, Slaughter MS. Comparison of total artificial heart and biventricular assist device support as bridge-to-transplantation. J Card Surg. 2016;31(10):648–53. https://doi.org/10.1111/jocs.12823.

    Article  PubMed  Google Scholar 

  37. Levin AP, Fried J, Wever-Pinzon O, Garan AR, Takeda K, Takayama H, et al. Bridging to Transplant With Fully Implantable Biventricular Assist Devices vs. Total Artificial Heart Implantation in Patients With Advanced Biventricular Failure. J Heart Lung Transplant. 2015;34(4):S152. https://doi.org/10.1016/j.healun.2015.01.409.

    Article  Google Scholar 

  38. Ng BC, Smith PA, Nestler F, Timms D, Cohn WE, Lim E. Application of adaptive Starling-like controller to Total artificial heart using dual rotary blood pumps. Ann Biomed Eng. 2017;45(3):567–79. https://doi.org/10.1007/s10439-016-1706-3.

    Article  PubMed  Google Scholar 

  39. Mohacsi P, Leprince P. The CARMAT total artificial heart. Eur J Cardiothorac Surg. 2014;46(6):933–4. https://doi.org/10.1093/ejcts/ezu333.

    Article  PubMed  Google Scholar 

  40. Smadja DM, Susen S, Rauch A, Cholley B, Latremouille C, Duveau D, et al. The Carmat bioprosthetic Total artificial heart is associated with early hemostatic recovery and no acquired von Willebrand syndrome in calves. J Cardiothorac Vasc Anesth. 2017;31(5):1595–602. https://doi.org/10.1053/j.jvca.2017.02.184.

    Article  PubMed  Google Scholar 

  41. Latremouille C, Carpentier A, Leprince P, Roussel JC, Cholley B, Boissier E, et al. A bioprosthetic total artificial heart for end-stage heart failure: results from a pilot study. J Heart Lung Transplant. 2018;37(1):33–7. https://doi.org/10.1016/j.healun.2017.09.002.

    Article  PubMed  Google Scholar 

  42. Laumen M, Finocchiaro T, Cuenca E, Guersoy D, Spiliopoulos S, Tenderich G, et al. A Novel Total Artificial Heart for Destination Therapy: In-Vitro and In-Vivo Study. Biomed Tech. 2013;58(Supp 1). https://doi.org/10.1515/bmt-2013-4373.

  43. Szabo Z, Holm J, Najar A, Hellers G, Pieper IL, Ahn HC. Scandinavian real heart (SRH): 11 implantations as total artificial heart (TAH)–experimental update. J Clin Exp Cardiol. 2018;9:578. https://doi.org/10.4172/2155-9880.1000578.

    Article  Google Scholar 

  44. Villa CR, Morales DL. The Total Artificial Heart in End-Stage Congenital Heart Disease. Front Physiol. 2017. https://doi.org/10.3389/fphys.2017.00131.

  45. Morales DL, Rizwan R, Zafar F, Villa C, Jefferies JL, Bryant R, et al. The worldwide experience of SynCardia Total artificial heart in patients with congenital heart disease. J Heart Lung Transplant. 2016;35(4):S162–3. https://doi.org/10.1016/j.healun.2016.01.452.

    Article  Google Scholar 

  46. • Morales DL, Lorts A, Rizwan R, Zafar F, Arabia FA, Villa CR. Worldwide experience with the Syncardia Total artificial heart in the pediatric population. ASAIO J. 2017;63(4):518–9. https://doi.org/10.1097/MAT.0000000000000504. Highlights experience using the TAH in the pediatric population.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathaniel Melton.

Ethics declarations

Conflict of Interest

Nathaniel Melton, Behzad Soleimani, Robert Dowling declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melton, N., Soleimani, B. & Dowling, R. Current Role of the Total Artificial Heart in the Management of Advanced Heart Failure. Curr Cardiol Rep 21, 142 (2019). https://doi.org/10.1007/s11886-019-1242-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-019-1242-5

Keywords

Navigation