Skip to main content
Log in

New Developments in the Genetics of Hypertension: What Should Clinicians Know?

  • Hypertension (WB White and AJ Peixoto, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

It has long been known that genetic factors play a major role in determining an individual’s propensity to hypertension. In recent years, there has been major progress towards realizing the goal of identifying the specific genetic factors that lead to alterations in blood pressure. Of particular note, new genes regulating renal sodium handling and aldosterone regulation have been discovered via the study of rare Mendelian disorders. Similarly, a number of large genome-wide association studies have been completed, which have added to our understanding as well. Here, recent progress in the genetics of hypertension will be reviewed, with an emphasis towards highlighting specific areas where clinical practice has already or will soon be affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Roger VL et al. Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation. 2012;125(1):e2–220.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Banegas JR et al. Achievement of treatment goals for primary prevention of cardiovascular disease in clinical practice across Europe: the EURIKA study. Eur Heart J. 2011;32(17):2143–52.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Egan BM, Zhao Y, Axon RN. US trends in prevalence, awareness, treatment, and control of hypertension, 1988–2008. JAMA. 2010;303(20):2043–50.

    Article  CAS  PubMed  Google Scholar 

  4. Effects of treatment on morbidity in hypertension. II. Results in patients with diastolic blood pressure averaging 90 through 114 mm Hg. JAMA. 1970;213(7):1143–52.

  5. Effects of treatment on morbidity in hypertension. Results in patients with diastolic blood pressures averaging 115 through 129 mm Hg. JAMA. 1967;202(11): 1028–34.

  6. Rice T et al. Cardiovascular risk factors in a French Canadian population: resolution of genetic and familial environmental effects on blood pressure using twins, adoptees, and extensive information on environmental correlates. Genet Epidemiol. 1989;6(5):571–88.

    Article  CAS  PubMed  Google Scholar 

  7. Feinleib M et al. The NHLBI twin study of cardiovascular disease risk factors: methodology and summary of results. Am J Epidemiol. 1977;106(4):284–5.

    CAS  PubMed  Google Scholar 

  8. Biron P, Mongeau JG, Bertrand D. Familial aggregation of blood pressure in 558 adopted children. Can Med Assoc J. 1976;115(8):773–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Longini Jr IM et al. Environmental and genetic sources of familial aggregation of blood pressure in Tecumseh, Michigan. Am J Epidemiol. 1984;120(1):131–44.

    PubMed  Google Scholar 

  10. Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell. 2001;104(4):545–56.

    Article  CAS  PubMed  Google Scholar 

  11. Shimkets RA et al. Liddle’s syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell. 1994;79(3):407–14.

    Article  CAS  PubMed  Google Scholar 

  12. Hansson JH et al. Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome. Nat Genet. 1995;11(1):76–82.

    Article  CAS  PubMed  Google Scholar 

  13. Warnock DG. Liddle syndrome: genetics and mechanisms of Na+ channel defects. Am J Med Sci. 2001;322(6):302–7.

    Article  CAS  PubMed  Google Scholar 

  14. Gordon RD et al. Evidence that primary aldosteronism may not be uncommon: 12 % incidence among antihypertensive drug trial volunteers. Clin Exp Pharmacol Physiol. 1993;20(5):296–8.

    Article  CAS  PubMed  Google Scholar 

  15. Mulatero P et al. Increased diagnosis of primary aldosteronism, including surgically correctable forms, in centers from five continents. J Clin Endocrinol Metab. 2004;89(3):1045–50.

    Article  CAS  PubMed  Google Scholar 

  16. Loh KC et al. Prevalence of primary aldosteronism among Asian hypertensive patients in Singapore. J Clin Endocrinol Metab. 2000;85(8):2854–9.

    CAS  PubMed  Google Scholar 

  17. Eide IK et al. Low-renin status in therapy-resistant hypertension: a clue to efficient treatment. J Hypertens. 2004;22(11):2217–26.

    Article  CAS  PubMed  Google Scholar 

  18. Strauch B et al. Prevalence of primary hyperaldosteronism in moderate to severe hypertension in the Central Europe region. J Hum Hypertens. 2003;17(5):349–52.

    Article  CAS  PubMed  Google Scholar 

  19. Mosso L et al. Primary aldosteronism and hypertensive disease. Hypertension. 2003;42(2):161–5.

    Article  CAS  PubMed  Google Scholar 

  20. Stowasser M et al. High rate of detection of primary aldosteronism, including surgically treatable forms, after ‘non-selective’ screening of hypertensive patients. J Hypertens. 2003;21(11):2149–57.

    Article  CAS  PubMed  Google Scholar 

  21. Gordon RD et al. High incidence of primary aldosteronism in 199 patients referred with hypertension. Clin Exp Pharmacol Physiol. 1994;21(4):315–8.

    Article  CAS  PubMed  Google Scholar 

  22. Gallay BJ et al. Screening for primary aldosteronism without discontinuing hypertensive medications: plasma aldosterone-renin ratio. Am J Kidney Dis. 2001;37(4):699–705.

    Article  CAS  PubMed  Google Scholar 

  23. Calhoun DA et al. Hyperaldosteronism among black and white subjects with resistant hypertension. Hypertension. 2002;40(6):892–6.

    Article  CAS  PubMed  Google Scholar 

  24. Stowasser M. Aldosterone excess and resistant hypertension: investigation and treatment. Curr Hypertens Rep. 2014;16(7):439.

    Article  PubMed  Google Scholar 

  25. Lifton RP et al. Hereditary hypertension caused by chimaeric gene duplications and ectopic expression of aldosterone synthase. Nat Genet. 1992;2(1):66–74.

    Article  CAS  PubMed  Google Scholar 

  26. Choi M et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science. 2011;331(6018):768–72. This study opened the door to our improved understanding of genetic mechanisms underlying primary aldosteronism.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Geller DS et al. A novel form of human Mendelian hypertension featuring nonglucocorticoid-remediable aldosteronism. J Clin Endocrinol Metab. 2008;93(8):3117–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Boulkroun S et al. Prevalence, clinical, and molecular correlates of KCNJ5 mutations in primary aldosteronism. Hypertension. 2012;59(3):592–8.

    Article  CAS  PubMed  Google Scholar 

  29. Azizan EA et al. Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Nat Genet. 2013;45(9):1055–60.

    Article  CAS  PubMed  Google Scholar 

  30. Beuschlein F et al. Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat Genet. 2013;45(4):440–4. 444e1-2.

    Article  CAS  PubMed  Google Scholar 

  31. Scholl UI et al. Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat Genet. 2013;45(9):1050–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Scholl UI et al. Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism. Elife. 2015;4:e06315.

    Article  PubMed  Google Scholar 

  33. Scholl UI et al. Hypertension with or without adrenal hyperplasia due to different inherited mutations in the potassium channel KCNJ5. Proc Natl Acad Sci U S A. 2012;109(7):2533–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Wilson FH et al. Human hypertension caused by mutations in WNK kinases. Science. 2001;293(5532):1107–12.

    Article  CAS  PubMed  Google Scholar 

  35. Hoorn EJ et al. The calcineurin inhibitor tacrolimus activates the renal sodium chloride cotransporter to cause hypertension. Nat Med. 2011;17(10):1304–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Boyden LM et al. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature. 2012;482(7383):98–102. This paper used an exome-wide screening to identify causative mutations which underlie the phenotype of hypertension with hyperkalemia. These mutations will likely greatly aid our understanding of thiazide sensitive cotransporter physiology.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Huang CL, Cheng CJ. A unifying mechanism for WNK kinase regulation of sodium-chloride cotransporter. Pflugers Arch. 2015.

  38. Schuster H et al. Autosomal dominant hypertension and brachydactyly in a Turkish kindred resembles essential hypertension. Hypertension. 1996;28(6):1085–92.

    Article  CAS  PubMed  Google Scholar 

  39. Schuster H et al. Severe autosomal dominant hypertension and brachydactyly in a unique Turkish kindred maps to human chromosome 12. Nat Genet. 1996;13(1):98–100.

    Article  CAS  PubMed  Google Scholar 

  40. Maass PG, et al., PDE3A mutations cause autosomal dominant hypertension with brachydactyly. Nat Genet, 2015. 47(6): 647–53. Maass et al. identified mutations causing hypertension with brachydactyly, a phenotype that had eluded characterization for many years. The demonstration that mutations in PDE3A cause this phenotype suggests a novel pathway leading to hypertension, and may lead to an improved understanding of vascular injury in hypertension

  41. Ge D et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature. 2009;461(7262):399–401.

    Article  CAS  PubMed  Google Scholar 

  42. Newton-Cheh C et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41(6):666–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Levy D et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41(6):677–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. International Consortium for Blood Pressure Genome-Wide Association, Studies et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478(7367):103–9.

    Article  Google Scholar 

  45. Munroe PB, Barnes MR, Caulfield MJ. Advances in blood pressure genomics. Circ Res. 2013;112(10):1365–79.

    Article  CAS  PubMed  Google Scholar 

  46. Kurtz TW. Genome-wide association studies will unlock the genetic basis of hypertension: con side of the argument. Hypertension. 2010;56(6):1021–5.

    Article  CAS  PubMed  Google Scholar 

  47. Turner ST et al. Genomic association analysis of common variants influencing antihypertensive response to hydrochlorothiazide. Hypertension. 2013;62(2):391–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Frau F et al. Genome-wide association study identifies CAMKID variants involved in blood pressure response to losartan: the SOPHIA study. Pharmacogenomics. 2014;15(13):1643–52.

    Article  CAS  PubMed  Google Scholar 

  49. Hiltunen TP et al. Pharmacogenomics of hypertension: a genome-wide, placebo-controlled cross-over study, using four classes of antihypertensive drugs. J Am Heart Assoc. 2015;4(1):e001521.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Chittani M et al. TET2 and CSMD1 genes affect SBP response to hydrochlorothiazide in never-treated essential hypertensives. J Hypertens. 2015;33(6):1301–9.

    Article  CAS  PubMed  Google Scholar 

  51. Menni C. Blood pressure pharmacogenomics: gazing into a misty crystal ball. J Hypertens. 2015;33(6):1142–3.

    Article  CAS  PubMed  Google Scholar 

  52. Ji W et al. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat Genet. 2008;40(5):592–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

David S. Geller declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Geller.

Additional information

This article is part of the Topical Collection on Hypertension

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geller, D.S. New Developments in the Genetics of Hypertension: What Should Clinicians Know?. Curr Cardiol Rep 17, 122 (2015). https://doi.org/10.1007/s11886-015-0664-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-015-0664-y

Keywords

Navigation