Skip to main content

Advertisement

Log in

Impact of Functional Foods on Prevention of Cardiovascular Disease and Diabetes

  • Diabetes and Cardiovascular Disease (S Malik, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

A healthy dietary pattern is a cornerstone for the prevention and treatment of cardiovascular disease (CVD) and type 2 diabetes (T2DM). Compelling scientific evidence has shown many health effects of individual foods (including herbs and spices), beverages, and their constituent nutrients and bioactive components on risk of chronic disease and associated risk factors. The focus of functional foods research that is reviewed herein has been on assessing the health effects and underlying mechanisms of action of fruits and vegetables, whole grains, dairy products including fermented products, legumes, nuts, green tea, spices, olive oil, seafood, red wine, herbs, and spices. The unique health benefits of these functional foods have been the basis for recommending their inclusion in a healthy dietary pattern. A better understanding of strategies for optimally including functional foods in a healthy dietary pattern will confer greater benefits on the prevention and treatment of CVD and T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. World Health Organization Media Center Website. http://www.who.int/mediacentre/factsheets/fs312/en/ Access date November 21 2014.

  2. Chen G, Wang H, Zhang X, Yang S. Nutraceuticals and functional foods in the management of hyperlipidemia. Crit Rev Food Sci Nutr. 2014;54:1180–201.

    CAS  PubMed  Google Scholar 

  3. Oh YS, Jun HS. Role of bioactive food components in diabetes prevention: effects on beta-cell function and preservation. Nutrit Metabol Insights. 2014;7:51–9.

    Google Scholar 

  4. Position of the Academy of Nutrition and Dietetics: Functional Foods J Acad Nutr Diet 2013;113:1096–1103. This position paper provides a definition of functional foods and the regulatory overview that requires significant substantiation of functional foods.

  5. Mirmiran P, Bahadoran Z, Azizi F. Functional foods-based diets a novel dietary approach for management of type 2 diabetes and its complications: a review. World J Diab. 2014;5(3):267–81. This review article provides a comprehensive review of the prevention of diabetes with functional foods based diets.

    Google Scholar 

  6. International Food Information Council. Functional Foods. http;//www.foodinsight.org/Content/3842/Final%20Functional%20Foods%20Backgrounder.pdf. Accessed February 2, 2015.

  7. Ross S. Functional foods: the food and drug administration perspective. Am J Clin Nutr. 2000;71(6 suppl):1735S–8S.

    CAS  PubMed  Google Scholar 

  8. US General Accounting Office. Food safety: Improvements needed in over-seeing the safety of dietary supplements and “functional foods”. http://www.gao.gov/new.items/rc00156.pdf. Published July 2000. Accessed February 2 2015.

  9. US Food and Drug Administration Claims that can be made for conventional foods and dietary supplements. http://www.fda.gov/Food/LabelingNutrition/LabelClaims/ucm111447.htm.Published September 2003. Accessed February 2 2015.

  10. Food and Drug Administration. Guidance for industry: A food labeling guide. http://www.registrarcorp.com/contact/regulatory_updates.jsp?lang = en&func = 1 Access date February 2 2015.

  11. Borneo R, Leon AE. Whole grain cereals: functional components and health benefits. Food Funct. 2012;3:110–9.

    CAS  PubMed  Google Scholar 

  12. Ye EQ, Chacko SA, Chou EL, Kugizaski M, et al. Greater whole-grain intake is associated with lower risk of type 2 diabetes, cardiovascular disease and weight gain. J Nutr. 2012;142:1304–13.

    CAS  PubMed  Google Scholar 

  13. Okarter N, Liu RH. Health benefits of whole grain phytochemicals. Crit Rev Good Sci Nutr. 2010;50:193–20.

    CAS  Google Scholar 

  14. Anderson A, Tengblad S, Karlstrom B, Kamal-Eldin A, et al. Whole grain foods do not affect insulin sensitivity or markers of lipid peroxidations and inflammation in healthy, moderately overweight subjects. J Nutr. 2007;137:1401–7.

    Google Scholar 

  15. Martinez IM, Lattimer JM, Hubach KL, Case JA, et al. Gut microbiome composition is linked to whole grain induced immunological improvements. ISME J. 2013;7:269–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Cho S, Lu Q, Fahey GC, Klurfeld DM. Consumption of cereal fiber, mixtures of whole grains and bran, and whole grains and risk reduction in type 2 diabetes, obesity, and cardiovascular disease. Am J Clin Nutr. 2013;98:594–619.

    CAS  PubMed  Google Scholar 

  17. http://www.cnpp.usda.gov/Publications/DietaryGuidelines/2010/DGAC/Report/D-3-FattyAcidsCholesterol.pdf Accessed February 2 2015.

  18. He M, Van Dam RN, Rimm E, Hu FB, et al. Whole-grain, cereal fiber, bran, and germ intake and the risks of all-cause and cardiovascular disease-specific mortality among women with type 2 diabetes mellitus. Circulation. 2010;121:2162–8.

    PubMed Central  PubMed  Google Scholar 

  19. Toh JY, Tan VM, Lim PC, Lim ST, Chong MF. Flavonoids from fruit and vegetables: a focus on cardiovascular risk factors. Curr Atheroscler Rep. 2013;15(12):368.

    CAS  PubMed  Google Scholar 

  20. Chawla R, Patil GR. Soluble dietary fiber. Compr Rev Food Sci Food Saf. 2010;9(2):178–96.

    CAS  Google Scholar 

  21. Raninen K, Lappi J, Mykkanen H, Poutanen K. Dietary fiber type reflects physiological functionality: comparison of grain fiber, inulin and polydextrose. Nutr Rev. 2011;60(1):9–21.

    Google Scholar 

  22. Viuda-martos M, Sanchez-zapata E, Sayas-barberá E, Sendra E, Pérez-Álvarez JA, Fernández-lópez J. Tomato and tomato byproducts. Human health benefits of lycopene and its application to meat products: a review. Crit Rev Food Sci Nutr. 2014;54(8):1032–49.

    CAS  PubMed  Google Scholar 

  23. Muller FO. Re: The grapefruit: an old wine in a new glass? Metabolic and cardiovascular perspectives. Cardiovasc J Afr. 2011;22(1):37.

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Takahashi K, Kamada C, Yoshimura C, Okumura R, et al. Effects of total and green vegetable intakes on glycated hemoglobin A1c and triglycerides in elderly patients with type 2 diabetes mellitus: the Japanese Elderly Intervention Trial. Geriatr Gerontol Int. 2012;12 Suppl 1:50–8.

    PubMed  Google Scholar 

  25. Hegde SV, Adhikari PMN, D’Souza V. Effect of daily supplementation of fruits on oxidative stress indices and glycemic status in type 2 diabetes mellitus. Complem Ther Clin Pract. 2013;19:97–100.

    Google Scholar 

  26. Tanaka S, Yoshimura Y, Kawasaki R, Kamada C, et al. Fruit intake and incident diabetic retinopathy with type 2 diabetes. Epidemiology. 2013;24:204–11.

    PubMed  Google Scholar 

  27. Chan HT, Yiu KH, Wong CY, Li SW, et al. Increased dietary fruit intake was associated with lower burden of carotid atherosclerosis in Chinese patients with type 2 diabetes mellitus. Diabet Med. 2013;30:100–8.

    CAS  PubMed  Google Scholar 

  28. Yang J, Xiao YY. Grape phytochemicals and associated health benefits. Crit Rev Food Sci Nutr. 2013;53(11):1202–25.

    CAS  PubMed  Google Scholar 

  29. Stowe CB. The effects of pomegranate juice consumption on blood pressure and cardiovascular health. Complement Ther Clin Pract. 2011;17(2):113–5.

    PubMed  Google Scholar 

  30. Ismail T, Sestilli P, Akhtar S. Pomogranate peel and fruit extracts: a review of potential anti-inflammatory and anti-infective effects. J Ethnopharmacol. 2012;143(2):397–405.

    CAS  PubMed  Google Scholar 

  31. Bondonno CP, Yang X, Croft KD, et al. Flavonoid rich apples and nitrate-rich spinach augment nitric oxide status and improve endothelial function in healthy men and women: a randomized controlled trial. Free Radic Ciol Med. 2012;52(1):95–102.

    CAS  Google Scholar 

  32. Sirtori CR, Galli C, Anderson JW, Arnoldi A, et al. Nutritional and neutraceutical approaches to dyslipidemia and atherosclerosis prevention: focus on dietary proteins. Atherosclerosis. 2009;203(1):8–17.

    CAS  PubMed  Google Scholar 

  33. Flight I, Clifton P. Cereal grains and legumes in the prevention of coronary heart dz & stroke: a review of the literature. Eur J Clin Nutr. 2006;60:1145–59.

    CAS  PubMed  Google Scholar 

  34. Duranti M. Grain legume proteins and nutraceutical properties. Fitoterapia. 2006;77:67–82.

    CAS  PubMed  Google Scholar 

  35. Barrett MI, Udani JK. A proprietary alpha-amylase inhibitor from white bean (Phaseolus vulgaris): a review of clincal studies on weight loss and glycemic control. Nutr J. 2011;10:24.

    PubMed Central  PubMed  Google Scholar 

  36. Yao Y, Cheng XZ, Wang LX, Wang SH, et al. Major phenolic compounds, antioxidant capacity and antidiabetic potential of rice bean (Vigna umbellata L.) in China. In J Mol Sci. 2012;13:2707–16.

    CAS  Google Scholar 

  37. Helmstadter A. Beans and diabetes: Phenolus vulgaris preparation as antihypertensive agents. J Med Food. 2010;13:251–4.

    PubMed  Google Scholar 

  38. Preuss HG. Bean amylase inhibitor and other carbohydrate absorption blockers effects on diabesity and general health. J Am Coll Nutr. 2009;28:266–76.

    CAS  PubMed  Google Scholar 

  39. Thompson SV, Winham DM, Hutchins AM. Bean and rice meals reduce postprandial glycemic responses in adults with type 2 diabetes: a crossover study. Nutr J. 2012;11:23.

    PubMed Central  PubMed  Google Scholar 

  40. Weisse K, Brandsch C, Zernsdorf B, Nembongwe G, et al. Lupin protein compared to casein lowers the LDL-Cholesterol:HDL-Cholesterol ratio of hypercholesterolemic adults. Eur J Nutr. 2010;49(2):65–71.

    CAS  PubMed  Google Scholar 

  41. Gilbert ER, Liu D. Anti-diabetic functions of soy isoflavone genistein: mechanism underlying its effects on pancreatic beta-cell function. Food Fnct. 2013;4:200–12.

    CAS  Google Scholar 

  42. Anderson JW, Bush HM. Soy protein effects on serum lipoproteins: a quality assessment and meta analysis of randomized, controlled studies. J Am Coll Nutr. 2011;30:79–91.

    CAS  PubMed  Google Scholar 

  43. Azadbakht L, Shakerhosseini R, Atabak S, Jamshidian M, et al. Beneficiary effect of dietary soy protein on lowering plasma levels of lipid and improving kidney function in type 2 diabetes with nephropathy. Eur J Clin Nutr. 2003;57:1292–4.

    CAS  PubMed  Google Scholar 

  44. Bhathena SJ, Velasquez MT. Beneficial role of dietary phytoestrogens in obesity and diabetes. Am J Clin Nutr. 2002;76:1191–201.

    CAS  PubMed  Google Scholar 

  45. Yang B, Chen Y, Xu T, Yu Y, et al. Systematic review and meta-analysis of soy products consumption in patients with type 2 diabetes mellitus. Asia Pac J Clin Nutr. 2011;20:593–602.

    CAS  PubMed  Google Scholar 

  46. Ronis MJ, Chen Y, Badeaus J, Badger TM. Dietary soy protein isolate attenuates metabolic syndrome in rats via effects on PPAR, LXR and SREBP signaling. J Nutr. 2009;139:1431–8.

    CAS  PubMed  Google Scholar 

  47. Liu CF, Pan TM. Beneficial Effects of Bioactive Peptides derived from Soybean on Human Health and Their Production by Genetic Engineering. Soybean and health 2011;311–329.

  48. Anderson JW, Bush HM. Soy protein effects on serum lipoproteins: a quality assessment and meta-analysis of randomized, controlled studies. J Am Coll Nutr. 2011;30:2,79–91.

    Google Scholar 

  49. Harland JI, Haffner TA. Systematic review, meta-analysis and regression of randomized controlled trials reporting an association between an intake of circa 25 g soya protein per day and blood cholesterol. Atherosclerosis. 2008;200:13–27.

    CAS  PubMed  Google Scholar 

  50. Afshin A, Micha R, Khatibzadeh S, Mozaffarian D. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: a systematic review and meta-analysis. Am J Clin Nutr. 2014;100:278–88.

    CAS  PubMed  Google Scholar 

  51. Kendall CW, Esfahani A, Truan J, Srichaikul K, et al. Health benefits of nuts in prevention and management of diabetes. Asia Pac J Clin Nutr. 2010;19:110–6.

    CAS  PubMed  Google Scholar 

  52. Ross E. Nuts and novel biomarkers of cardiovascular disease. Am J Clin Nutr. 2009;89:1649S–56S.

    Google Scholar 

  53. Jenkins DJ, Hu FB, Tapsell LC, Josse AR, et al. Possible benefits of nuts in type 2 diabetes. J Nutr. 2008;138:1752S–6S.

    CAS  PubMed  Google Scholar 

  54. Li TY, Brennan AM, Wedick NM, Mantzoros C, et al. Regular consumption of nuts is associated with a lower risk of cardiovascular disease in women with type 2 diabetes. J Nutr. 2009;139:1333–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Tey SL, Brown R, Gray A, Chisholm A, et al. Nuts improve diet quality compared to other energy dense snacks while maintaining body weight. J Nutr Metab. 2011;2011:357350.

    PubMed Central  PubMed  Google Scholar 

  56. Mattes RD, Dreher ML. Nuts and healthy body weight maintenance mechanisms. Asia Pac J Clin Nutr. 2010;19:137–41.

    PubMed  Google Scholar 

  57. Mantzoros CS, Williams CJ, Manson JE, Meigs JB, et al. Adherence to the Mediterranean dietary pattern is positively associated with plasma adiponectin concentrations in diabetic women. Am J Clin Nutr. 2006;84:328–35.

    CAS  PubMed  Google Scholar 

  58. Jiang R, Jacobs DR, Mayer-Davis E, Szklo M, et al. Nut and seed consumption and inflammatory markers in the multi-ethnic study of atherosclerosis. Am J Epidemiol. 2006;163:222–31.

    PubMed  Google Scholar 

  59. Ross E. Nuts and novel biomarkers of cardiovascular disease. Am J Clin Nutr. 2009;89:1649S–56S.

    Google Scholar 

  60. Bao U, Han J, Hu FG, Stampfer M, Willett W, Fuchs CS. Association of nut consumption with total and cause specific mortality. N Engl J Med. 2013;369:2001–11. In two major cohort studies (Nurses’ Health Study and the Health Professionals Follow-up Study), the frequency of nut consumption was inversely associated with total and cause-specific mortality in a dose-dependent manner. Nut consumption (seven or more times per week) resulted in a 20 % lower death rate.

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Wang ZM, Zhou B, Wang YS, Gong Q et al. Black and green tea consumption and the risk of coronary artery disease: a meta-analysis. Am J Clin Nutr. 93 (3):506–515.

  62. Jiao H, Hu G, Gu D, Ni X. Having a Promising Efficacy on Type II diabetes, It’s definitely a green tea time. Curr Med Chem. 2014.

  63. Takahashi M, Miyashita M, Suzuki K, et al. Acute ingestion of catechin-rich green tea improves postprandial glucose status and increases serum thioredoxin concentrations in postmenopausal women. Br J Nutr. 2014:1–9.

  64. Zuo X, Tian C, Zhao N, Ren W, et al. Tea polyphenols alleviate high fat and high glucose-induced endothelial hyper permeability by attenuating ROS production via NADPH oxidase pathway. BMC Res Notes. 2014;7:120.

    PubMed Central  PubMed  Google Scholar 

  65. Grassi D, Desideri G, Ferri C. Protective effects of dark chocolate on endothelial function and diabetes. Curr Opin Clin Nutr Metab Care. 2013;16(6):662–8.

    CAS  PubMed  Google Scholar 

  66. Katz DL, Doughty K, Ali A. Cocoa and chocolate in human health and disease. Antioxid Redox Signal. 2011;15(10):2779–811.

    CAS  PubMed  Google Scholar 

  67. Buitrago-Lopez A, Sanderson J, Johnson L, Warnakula S, et al. Chocolate consumption and cardiometabolic disorders: systematic review and meta-analysis. BMJ. 2011;343:d4488.

    PubMed Central  PubMed  Google Scholar 

  68. Messerli FH. Chocolate consumption, cognitive function, and nobel laureates. N Engl J Med. 2012;367:1562–4.

    CAS  PubMed  Google Scholar 

  69. Fernández-Murga L, Tarín JJ, García-Perez MA, Cano A. The impact of chocolate on cardiovascular health. Maturitas. 2011;69:312–21.

    PubMed  Google Scholar 

  70. Eilat-adar S, Sinai T, Yosefy C, Henkin Y. Nutritional recommendations for cardiovascular disease prevention. Nutrients. 2013;5(9):3646–83.

    PubMed Central  PubMed  Google Scholar 

  71. Kwon MJ, Song YS, Choi MS, Park S et al. Cholesteryl ester transfer protein activity and atherogenic parametes in rabbits supplemented with cholesterol and garlic powder. Life Sci. 72(26):2953–2964.

  72. Khoo YS, Aziz Z. Garlic supplementation and serum cholesterol: a meta-analysis. J Clin Pharm Ther. 2009;34:133–45.

    CAS  PubMed  Google Scholar 

  73. Ackermann RT, Mulrow CD, Ramirez G, Gardner CD. Garlic shows promise for improving some cardiovascular risk factors. Arch Intern Med. 2001;161:813–24.

    CAS  PubMed  Google Scholar 

  74. Zeb I, Ahmadi N, Nasir K, Kadakia J, Larijani VN, Flores F, et al. Aged garlic extract and coenzyme Q10 have favorable effect on inflammatory markers and coronary atherosclerosis progression: a randomized clinical trial. J Cardiovasc Dis Res. 2012;3(3):185–90. doi:10.4103/0975-3583.98883.

    PubMed Central  PubMed  Google Scholar 

  75. Qin B, Panickar KS, Anderson RA. Cinnamon: potential role in the prevention of insulin resistance, metabolic syndrome, and type 2 diabetes. J Diabetes Sci Technol. 2010;4(3):685–93.

    PubMed Central  PubMed  Google Scholar 

  76. Crawford P. Effectiveness of cinnamon for lowering hemoglobin A1C in patients with type 2 diabetes: a randomized, controlled trial. J Am Board Fam Med. 2009;22(5):507–12.

    PubMed  Google Scholar 

  77. Natural Standard https://naturalmedicines.therapeuticresearch.com. Accessed September 29, 2014.

  78. Smith JD, Clinard VB. Natural products for the management of type 2 diabetes mellitus and comorbid conditions. J Am Pharm Assoc. 2014;54(5):e304–20.

    Google Scholar 

  79. Sahebkar A. Are curcuminoids effective C-reactive protein-lowering agents in clinical practice? Evidence from a meta-analysis. Phytother Res. 2014;28(5):633–42.

    CAS  PubMed  Google Scholar 

  80. Neelakantan N, Narayanan M, de Souza RJ, et al. Effect of fenugreek (Trigonella foenum-graecum L) intake on glycemia: a meta-analysis of clinical trials. Nutr J. 2014;13:7.

    PubMed Central  PubMed  Google Scholar 

  81. Liu Y, Kakani R, Nair MG. Compounds in functional food fenugreek spice exhibit anti-inflammatory and antioxidant activities. Food Chem. 2012;3:1187–92.

    Google Scholar 

  82. Mandegary A, Pournamdari M, Sharififar F, Pournourmohammadi S, Fardiar R, Shooli S. Alkaloid and flavonoid rich fractions of fenugreek seeds (Trigonella foenum-graecum L.) with antinociceptive and anti-inflammatory effects. Food Chem Toxicol. 2012;50(7):2503–7.

    CAS  PubMed  Google Scholar 

  83. Elwood P, Pickering J, Givens DI, Gallacher J. The consumption of milk and dairy foods and the incidence of vascular disease and diabetes: an overview of the evidence. Lipids. 2010;45(10):925–39.

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Soedamah-Muthu SS, Ding EL, Al-Delaimy WK, Hu FB, Engberink MF, Willett WC, et al. Milk and dairy consumption and incidence of cardiovascular diseases and all-cause mortality: dose–response meta-analysis of prospective cohort studies. Am J Clin Nutri. 2011;93(1):158–71.

    CAS  Google Scholar 

  85. Sonestedt E, Wirfält E, Wallström P, Gullberg B, Orho-Melander M, Hedblad B. Dairy products and its association with incidence of cardiovascular disease: the Malmö diet and cancer cohort. Eur J Epidemiol. 2011;26(8):609–18.

    CAS  PubMed  Google Scholar 

  86. Patterson E, Larsson SC, Wolk A, Åkesson A. Association between dairy food consumption and risk of myocardial infarction in women differs by type of dairy food. J Nutri. 2013;143(1):74–9.

    CAS  Google Scholar 

  87. de Oliveira Otto MC, Nettleton JA, Lemaitre RN, Steffen LM, Kromhout D, Rich SS, et al. Biomarkers of dairy fatty acids and risk of cardiovascular disease in the multi-ethnic study of atherosclerosis. J Am Heart Assoc. 2013;2(4):e000092.

    PubMed Central  PubMed  Google Scholar 

  88. Mann GV, Spoerry A. Studies of a surfactant and cholesteremia in the Maasai. Am J Clin Nutri. 1974;27(5):464–9.

    CAS  Google Scholar 

  89. de Roos NM, Schouten G. Yoghurt enriched with Lactobacillus acidophilus does not lower blood lipids in healthy men and women with normal to borderline high serum cholesterol levels. Eur J Clin Nutr. 1999;53(4):277–80.

    PubMed  Google Scholar 

  90. Lewis SJ, Burmeister S. A double-blind placebo-controlled study of the effects of Lactobacillus acidophilus on plasma lipids. Eur J Clin Nutr. 2005;59(6):776–80.

    CAS  PubMed  Google Scholar 

  91. Simons LA, Amansec SG, Conway P. Effect of Lactobacillus fermentum on serum lipids in subjects with elevated serum cholesterol. Nutr Metab Cardiovasc Dis. 2006;16(8):531–5.

    PubMed  Google Scholar 

  92. Ataie-Jafari A, Larijani B, Alavi Majd H, Tahbaz F. Cholesterol-lowering effect of probiotic yogurt in comparison with ordinary yogurt in mildly to moderately hypercholesterolemic subjects. Ann Nutr Metab. 2009;54(1):22–7.

    CAS  PubMed  Google Scholar 

  93. Xiao JZ, Kondo S, Takahashi N, Miyaji K, Oshida K, Hiramatsu A, et al. Effects of milk products fermented by Bifidobacterium longum on blood lipids in rats and healthy adult male volunteers. J Dairy Sci. 2003;86(7):2452–61.

    CAS  PubMed  Google Scholar 

  94. Anderson JW. Effect of fermented milk (yogurt) containing lactobacillus acidophilus L1 on serum cholesterol in hypercholesterolemic humans. J Am Coll Nutr. 1999;18(1):43–50.

    CAS  PubMed  Google Scholar 

  95. Guo Z, Liu XM, Zhang QX, Shen Z, Tian FW, Zhang H, et al. Influence of consumption of probiotics on the plasma lipid profile: a meta-analysis of randomised controlled trials. Nutr Metab Cardiovasc Dis. 2011;21(11):844–50.

    CAS  PubMed  Google Scholar 

  96. Agerholm L, Bell ML. The effect of a probiotic milk product on plasma cholesterol: a meta-analysis of short-term intervention studies. Eur J Clin Nutr. 2000;54(11):856.

    Google Scholar 

  97. DiRienzo DB. Effect of probiotics on biomarkers of cardiovascular disease: implications for heart-healthy diets. Nutr Rev. 2014;72(1):18–29.

    PubMed  Google Scholar 

  98. Jakobsen MU, O’Reilly EJ, Heitmann BL, Pereira MA, Bälter K, Fraser GE, et al. Major types of dietary fat and risk of coronary heart disease: a pooled analysis of 11 cohort studies. Am J Clin Nutr. 2009;89(5):1425–32. Results from 11 American and European cohort pooled studies (with 344,696 participants) demonstrated that replacing saturated fatty acids with polyunsaturated fatty acids rather than monounsaturated fatty acids or dietary carbohydrate prevents CHD.

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Mente A, de Koning L, Shannon HS, Anand SS. A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch Intern Med. 2009;169(7):659–69.

    CAS  PubMed  Google Scholar 

  100. Skeaff CM, Miller J. Dietary fat and coronary heart disease: summary of evidence from prospective cohort and randomised controlled trials. Ann Nutri Metab. 2009;55(1–3):173–201.

    CAS  Google Scholar 

  101. Chowdhury R, Warnakula S, Kunutsor S, Crowe F, Ward HA, Johnson L, et al. Association of dietary, circulating, and supplement fatty acids with coronary risk a systematic review and meta-analysis. Ann Intern Med. 2014;160(6):398–406.

    PubMed  Google Scholar 

  102. Schwingshackl L, Hoffmann G. Monounsaturated fatty acids and risk of cardiovascular disease: synopsis of the evidence available from systematic reviews and meta-analyses. Nutrients. 2012;4(12):1989–2007.

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Guasch-Ferre M, Hu F, Martinez-Gonzalez M, Fito M, Bullo M, Estruch R, et al. Olive oil intake and risk of cardiovascular disease and mortality in the PREDIMED study. BMC Med. 2014;12(1):78. In this study, for every 10 g/day increase in extra-virgin olive oil consumed, risk of cardiovascular disease and mortality decreased by 10 % and 7 %, respectively.

    PubMed Central  PubMed  Google Scholar 

  104. Buckland G, Mayén AL, Agudo A, Travier N, Navarro C, Huerta JM, et al. Olive oil intake and mortality within the Spanish population (EPIC-Spain). Am J Clin Nutr. 2012;96(1):142–9.

    CAS  PubMed  Google Scholar 

  105. Samieri C, Feart C, Proust-Lima C, Peuchant E, Tzourio C, Stapf C, et al. Olive oil consumption, plasma oleic acid, and stroke incidence: the Three-City Study. Neurology. 2011;77(5):418–25.

    CAS  PubMed  Google Scholar 

  106. Martínez-González MA, Dominguez LJ, Delgado-Rodríguez M. Olive oil consumption and risk of CHD and/or stroke: a meta-analysis of case–control, cohort and intervention studies. Br J Nutr. 2014;112(02):248–59.

    PubMed  Google Scholar 

  107. Schwingshackl L, Hoffmann G. Monounsaturated fatty acids, olive oil and health status: a systematic review and meta-analysis of cohort studies. Lipids Health Dis. 2014;13(1):154.

    PubMed Central  PubMed  Google Scholar 

  108. Di Castelnuovo A, Rotondo S, Iacoviello L, Donati MB, de Gaetano G. Meta-analysis of wine and beer consumption in relation to vascular risk. Circulation. 2002;105(24):2836–44.

    PubMed  Google Scholar 

  109. Li H, Förstermann U. Red wine and cardiovascular health. Circ Res. 2012;111(8):959–61.

    CAS  PubMed  Google Scholar 

  110. Chiva-Blanch G, Urpi-Sarda M, Ros E, Arranz S, Valderas-Martínez P, Casas R, et al. Dealcoholized red wine decreases systolic and diastolic blood pressure and increases plasma nitric oxide: short communication. Circ Res. 2012;111(8):1065–8.

    CAS  PubMed  Google Scholar 

  111. Krnic M, Modun D, Budimir D, Gunjaca G, Jajic I, Vukovic J, et al. Comparison of acute effects of red wine, beer and vodka against hyperoxia-induced oxidative stress and increase in arterial stiffness in healthy humans. Atherosclerosis. 2011;218(2):530–5.

    CAS  PubMed  Google Scholar 

  112. Costanzo S, Di Castelnuovo A, Donati M, Iacoviello L, de Gaetano G. Wine, beer or spirit drinking in relation to fatal and non-fatal cardiovascular events: a meta-analysis. Eur J Epidemiol. 2011;26(11):833–50.

    PubMed  Google Scholar 

  113. Bang HO, Dyerberg J, Sinclair HM. The composition of the Eskimo food in north western Greenland. Am J Clin Nutr. 1980;33(12):2657–61.

    CAS  PubMed  Google Scholar 

  114. Mozaffarian D, Rimm EB. Fish intake, contaminants, and human health: evaluating the risks and the benefits. JAMA. 2006;296(15):1885–99.

    CAS  PubMed  Google Scholar 

  115. Mozaffarian D, Lemaitre RN, King IB, Song X, Huang H, Sacks FM, et al. Plasma phospholipid long-chain ω-3 fatty acids and total and cause-specific mortality in older adults a cohort study. Ann Intern Med. 2013;158(7):515–25.

    PubMed Central  PubMed  Google Scholar 

  116. Wu JHY, Lemaitre RN, King IB, Song X, Sacks FM, Rimm EB, et al. Association of plasma phospholipid long-chain omega-3 fatty acids with incident atrial fibrillation in older adults: the cardiovascular health study. Circulation. 2012;125(9):1084–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Djoussé L, Akinkuolie AO, Wu JHY, Ding EL, Gaziano JM. Fish consumption, omega-3 fatty acids and risk of heart failure: a meta-analysis. Clin Nutr. 2012;31(6):846–53.

    PubMed Central  PubMed  Google Scholar 

  118. Marchioli R, Barzi F, Bomba E, Chieffo C, Di Gregorio D, Di Mascio R, et al. Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction: time-course analysis of the results of the Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico (GISSI)-Prevenzione. Circulation. 2002;105(16):1897–903.

    CAS  PubMed  Google Scholar 

  119. Yokoyama M, Origasa H, Matsuzaki M, Matsuzawa Y, Saito Y, Ishikawa Y, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007;369(9567):1090–8.

    CAS  PubMed  Google Scholar 

  120. Harris WS. Are n-3 fatty acids still cardioprotective? Curr Opin Clin Nutr Metab Care. 2013;16(2):141–9.

    CAS  PubMed  Google Scholar 

  121. U.S. Department of Agriculture and U.S. Department of Health and Human Services. USDA H. dietary guidelines for Americans 2010. 7th ed. Washington, DC: US Government Printing Office; 2010.

    Google Scholar 

  122. Spencer JPE, Gozier A. Flavonoids and related compounds. In: Paker L, Cardenas H, editors. Bioavaialability and function. oxidative stress and disease, vol 30. Boca Raton: CRG Press; 2012.

    Google Scholar 

  123. Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M,Borges G, Crozier A. Dietary polyphenolics in Human Health: Atructures, Bioavailabity and Evidence of Protective Effects against Chronic Diseases. 2013 Antioxidants and Redox Signaling 18, 14:1818–92.

  124. Reedy J, Krebs-Smith SM, Miler PE, Liese A, et al. Higher diet quality is associated with decreased risk of all-cause. Cardiovascular disease, and cancer mortality among older adults. J Nutr. 2014;144:881–9.

    CAS  PubMed  Google Scholar 

  125. 2015 Dietary Guidelines for Americans Committee Report http://www.health.gov/dietaryguidelines/.

  126. Grundy SM, Arai H, Barter P, Bersot TP et al. 2013. An International Atherosclerosis Society Position Paper: Global Recommendations for the Management of Dyslipidemia www.athero.org (accessed September 20, 2014).

  127. Eckel et al. 2013 AHA/ACC Guideline on Lifestyle Management to Reduce Cardiovascular Risk: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation published online November 12 2013. 201310.1161/01.cir.0000437740.48606.d1. http://content.onlinejacc.org/article.aspx?doi = 10.1016/j.jacc.2013.11.003 Accessed February 2 2015

  128. Jacobson TA, Ito MK, Maki KC, Orringer CE, Bays HE, Jones PH, et al. National lipid association recommendations for patient-centered management of dyslipidemia: part 1—executive summary. J Clin Lipidol. 2014;8:473–88.

    PubMed  Google Scholar 

  129. Evert AB, Boucher JL, Cypress M, Dunbar SA, Franz MJ, et al. Nutrition therapy recommendations for the management of adults with diabetes. Diab Care. 2014;37 Suppl 1:S120–43. doi:10.2337/dc14-S120.

    Google Scholar 

  130. Michael D. Jensen, Donna H. Ryan, Caroline M. Apovian, Jamy D. 2013 AHA/ACC/TOS Guideline for the management of overweight and obesity in adults. Circulation. 2013: published online before print November 12, 2013, 10.1161/01.cir.0000437739.71477.ee.

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Geeta Sikand, Penny Kris-Etherton, and Nancy Mariam Boulos declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geeta Sikand.

Additional information

This article is part of the Topical Collection on Diabetes and Cardiovascular Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sikand, G., Kris-Etherton, P. & Boulos, N.M. Impact of Functional Foods on Prevention of Cardiovascular Disease and Diabetes. Curr Cardiol Rep 17, 39 (2015). https://doi.org/10.1007/s11886-015-0593-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-015-0593-9

Keywords

Navigation