Skip to main content
Log in

Biomarkers of Plaque Instability

  • Lipid Abnormalities and Cardiovascular Prevention (G De Backer, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Atherosclerosis is the proximate cause of arterial thrombosis, leading to acute occlusive cardiovascular syndromes. Thrombosis in atherosclerosis usually results from rupture of the fibrous cap of atherosclerotic plaques with a smaller proportion resulting from superficial endothelial erosion. Ruptured plaques are often associated with intimal and adventitial inflammation, increased size of lipid-rich necrotic core with thinned out collagen-depleted fibrous cap, outward remodeling, increased plaque neovascularity, intraplaque hemorrhage, and microcalcification. By inference, non-ruptured plaques with similar compositional features are considered to be at risk for rupture and hence are labeled vulnerable plaques or high-risk plaques. Identification of vulnerable plaques may help in predicting the risk of acute occlusive syndromes and may also allow targeting for aggressive systemic and possibly local therapies. Plaque rupture is believed to result from extracellular matrix (which comprises the protective fibrous cap) dysregulation due to excessive proteolysis in the context of diminished matrix synthesis. Inflammation is believed to play a key role by providing matrix-degrading metalloproteinases and also by inducing death of matrix-synthesizing smooth muscle cells. Systemic markers of inflammation are thus the most logical forms of potential biomarkers which may predict the presence of vulnerable or high-risk plaques. Several studies have suggested the potential prognostic value of a variety of systemic markers, but regrettably, their overall clinical predictive value is modestly incremental at best, especially for individual subjects compared to groups of patients. Nevertheless, continued investigation of reliable, cost-effective biomarkers that predict the presence of a high-risk plaque and future athero-thrombotic cardiovascular events with greater sensitivity and specificity is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Paper of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Shah PK. Molecular mechanisms of plaque instability. Curr Opin Lipidol. 2007;18(5):492–9. Review.

    Article  CAS  PubMed  Google Scholar 

  2. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114(12):1852–66. An outstanding overview of atherogenesis and mechanisms of plaque rupture.

    Article  CAS  PubMed  Google Scholar 

  3. Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK, et al. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med. 2003;349(24):2316–25.

    Article  CAS  PubMed  Google Scholar 

  4. Bluestein D, Alemu Y, Avrahami I, Gharib M, Dumont K, Ricotta JJ, et al. Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling. J Biomech. 2008;41(5):1111–8.

    Article  PubMed  Google Scholar 

  5. Garcia-Garcia HM, Jang IK, Serruys PW, Kovacic JC, Narula J, Fayad ZA. Imaging plaques to predict and better manage patients with acute coronary events. Circ Res. 2014;114(12):1904–17.

    Article  CAS  PubMed  Google Scholar 

  6. Koenig W, Khuseyinova N. Biomarkers of atherosclerotic plaque instability and rupture. Arterioscler Thromb Vasc Biol. 2007;27(1):15–26.

    Article  CAS  PubMed  Google Scholar 

  7. Calabro P, Willerson JT, Yeh ET. Inflammatory cytokines stimulated C-reactive protein production by human coronary artery smooth muscle cells. Circulation. 2003;108:1930.

    Article  CAS  PubMed  Google Scholar 

  8. Yasojima K, Schwab C, McGeer EG, McGeer PL. Generation of C-reactive protein and complement components in atherosclerotic plaques. Am J Pathol. 2001;158:1039–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Burke AP, Tracy RP, Kolodgie F, Malcom GT, Zieske A, Kutys R, et al. Elevated C-reactive protein values and atherosclerosis in sudden coronary death: association with different pathologies. Circulation. 2002;105:2019–23.

    Article  CAS  PubMed  Google Scholar 

  10. Verma S, Devaraj S, Jialal I. Is C-reactive protein an innocent bystander or proatherogenic culprit? C-reactive protein promotes atherothrombosis. Circulation. 2006;113:2135–50.

    PubMed  Google Scholar 

  11. Wensley F, Gao P, Burgess S, Kaptoge S, Di Angelantonio E, Shah T, et al. Association between C reactive protein and coronary heart disease: C Reactive Protein Coronary Heart Disease Genetics Collaboration (CCGC), mendelian randomisation analysis based on individual participant data. BMJ. 2011;342:d548.

    Article  PubMed  Google Scholar 

  12. Pepys MB, Hawkins PN, Kahan MC, Tennent GA, Gallimore JR, Graham D, et al. Proinflammatory effects of bacterial recombinant human C-reactive protein are caused by contamination with bacterial products, not by C-reactive protein itself. Circ Res. 2005;97:e97–e103.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Lane T, Wassef N, Poole S, Mistry Y, Lachmann HJ, Gillmore JD, et al. Infusion of pharmaceutical-grade natural human C-reactive protein is not proinflammatory in healthy adult human volunteers. Circ Res. 2014;114(4):672–6. An important study that fails to support proinflammatory effects of CRP in humans.

    Article  CAS  PubMed  Google Scholar 

  14. Emerging Risk Factors Collaboration1, Kaptoge S, Di Angelantonio E, Lowe G, Pepys MB, Thompson SG, et al. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet. 2010;375(9709):132–40. doi:10.1016/S0140-6736(09)61717-7.

    Article  PubMed  Google Scholar 

  15. Kaptoge S, Di Angelantonio E, Pennells L, Wood AM, White IR, Gao P, et al. C-reactive protein, fibrinogen, and cardiovascular disease prediction. Emerging Risk Factors Collaboration. N Engl J Med. 2012;367(14):1310–20. An important study evaluating the value of CRP measurement for risk prediction.

    Article  PubMed  Google Scholar 

  16. Rus HG, Vlaicu R, Niculescu F. Interleukin-6 and interleukin-8 protein and gene expression in human arterial atherosclerotic wall. Atherosclerosis. 1996;127:263–71.

    Article  CAS  PubMed  Google Scholar 

  17. Lindmark E, Diderholm E, Wallentin L, Siegbahn A. Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease: effects of an early invasive or noninvasive strategy. J Am Med Assoc. 2001;286:2107–13.

    Article  CAS  Google Scholar 

  18. Ridker PM, Rifai N, Stampfer MJ, Hennekens CH. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation. 2000;101:1767–72.

    Article  CAS  PubMed  Google Scholar 

  19. Harris TB, Ferrucci L, Tracy RP, Corti MC, Wacholder S, Ettinger Jr WH, et al. Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly. Am J Med. 1999;106:506–12.

    Article  CAS  PubMed  Google Scholar 

  20. Volpato S, Guralnik JM, Ferrucci L, Balfour J, Chaves P, Fried LP, et al. Cardiovascular disease, interleukin-6, and risk of mortality in older women: the women’s health and aging study. Circulation. 2001;103:947–53.

    Article  CAS  PubMed  Google Scholar 

  21. Huber SA, Sakkinen P, Conze D, Hardin N, Tracy R. Interleukin-6 exacerbates early atherosclerosis in mice. Arterioscler Thromb Vasc Biol. 1999;19:2364–7.

    Article  CAS  PubMed  Google Scholar 

  22. Mallat Z, Corbaz A, Scoazec A, Graber P, Alouani S, Esposito B, et al. Interleukin-18/interleukin-18 binding protein signaling modulates atherosclerotic lesion development and stability. Circ Res. 2001;89:e41–5.

    Article  CAS  PubMed  Google Scholar 

  23. Elhage R, Jawien J, Rudling M, Ljunggren HG, Takeda K, Akira S, et al. Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. Cardiovasc Res. 2003;59:234–40.

    Article  CAS  PubMed  Google Scholar 

  24. Whitman SC, Ravisankar P, Daugherty A. Interleukin-18 enhances atherosclerosis in apolipoprotein E-/- mice through release of interferon-γ. Circ Res. 2002;90:e34–8.

    Article  CAS  PubMed  Google Scholar 

  25. Tenger C, Sundborger A, Jawien J, Zhou X. IL-18 accelerates atherosclerosis accompanied by elevation of IFN-γ and CXCL16 expression independently of T cells. Arterioscler Thromb Vasc Biol. 2005;25:791–6.

    Article  CAS  PubMed  Google Scholar 

  26. Okamura H, Tsutsi H, Komatsu T, Yutsudo M, Hakura A, Tanimoto T, et al. Cloning of a new cytokine that induces IFN- γ production by T cells. Nature. 1995;378:88–91.

    Article  CAS  PubMed  Google Scholar 

  27. Gerdes N, Sukhova GK, Libby P, Reynolds RS, Young JL, Schonbeck U. Expression of interleukin (IL)-18 and functional IL-18 receptor on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for atherogenesis. J Exp Med. 2002;195:245–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Ishida Y, Migita K, Izumi Y, Nakao K, Ida H, Kawakami A, et al. The role of IL-18 in the modulation of matrix metalloproteinases and migration of human natural killer (NK) cells. FEBS Lett. 2004;569:156–60.

    Article  CAS  PubMed  Google Scholar 

  29. Blankenberg S, Tiret L, Bickel C, Peetz D, Cambien F, Meyer J, et al. Interleukin-18 is a strong predictor of cardiovascular death in stable and unstable angina. Circulation. 2002;106:24–30.

    Article  CAS  PubMed  Google Scholar 

  30. Blankenberg S, Luc G, Ducimetiere P, Arveiler D, Ferrieres J, Amouyel P, et al. Interleukin-18 and the risk of coronary heart disease in European men: the Prospective Epidemiological Study of Myocardial Infarction (PRIME). Circulation. 2003;108:2453–9.

    Article  CAS  PubMed  Google Scholar 

  31. Koenig W, Khuseyinova N, Baumert J, Thorand B, Loewel H Chambless L, Meisinger C, Schneider A, Martin S, Kolb H, Herder C. Increased concentrations of C-reactive protein and interleukin-6 but not interleukin-18 are independently associated with incident coronary events in middle-aged men and women. Results from the MONICA/KORA Augsburg case-cohort study, 1984–2002. Arterioscler Thromb Vasc Biol. 2006;26(12):2745–51.

  32. Tiret L, Godefroy T, Lubos E, Nicaud V, Tregouet DA, Barbaux S, et al. Genetic analysis of the interleukin-18 system highlights the role of the interleukin-18 gene in cardiovascular disease. Circulation. 2005;112:643–50.

    Article  CAS  PubMed  Google Scholar 

  33. Hurt-Camejo E, Camejo G, Peilot H, Oorni K, Kovanen P. Phospholipase A(2) in vascular disease. Circ Res. 2001;89:298–304.

    Article  CAS  PubMed  Google Scholar 

  34. Anthonsen MW, Stengel D, Hourton D, Ninio E, Johansen B. Mildly oxidized LDL induces expression of group IIa secretory phospholipase A(2) in human monocyte-derived macrophages. Arterioscler Thromb Vasc Biol. 2000;20:1276–82.

    Article  CAS  PubMed  Google Scholar 

  35. Sartipy P, Camejo G, Svensson L, Hurt-Camejo E. Phospholipase A(2) modification of low density lipoproteins forms small high density particles with increased affinity for proteoglycans and glycosaminoglycans. J Biol Chem. 1999;274:25913–20.

    Article  CAS  PubMed  Google Scholar 

  36. Leitinger N, Watson AD, Hama SY, Ivandic B, Qiao JH, Huber J, et al. Role of group II secretory phospholipase A2 in atherosclerosis: 2. Potential involvement of biologically active oxidized phospholipids. Arterioscler Thromb Vasc Biol. 1999;19:1291–8.

    Article  CAS  PubMed  Google Scholar 

  37. Boekholdt SM, Keller TT, Wareham NJ, Luben R, Bingham SA, Day NE, et al. Serum levels of type II secretory phospholipase A2 and the risk of future coronary artery disease in apparently healthy men and women: the EPIC-Norfolk Prospective Population Study. Arterioscler Thromb Vasc Biol. 2005;25:839–46.

    Article  CAS  PubMed  Google Scholar 

  38. Kugiyama K, Ota Y, Takazoe K, Moriyama Y, Kawano H, Miyao Y, et al. Circulating levels of secretory type II phospholipase A(2) predict coronary events in patients with coronary artery disease. Circulation. 1999;100:1280–4.

    Article  CAS  PubMed  Google Scholar 

  39. Kugiyama K, Ota Y, Sugiyama S, Kawano H, Doi H, Soejima H, et al. Prognostic value of plasma levels of secretory type II phospholipase A2 in patients with unstable angina pectoris. Am J Cardiol. 2000;86:718–22.

    Article  CAS  PubMed  Google Scholar 

  40. Mallat Z, Steg PG, Benessiano J, Tanguy ML, Fox KA, Collet JP, et al. Circulating secretory phospholipase A2 activity predicts recurrent events in patients with severe acute coronary syndromes. J Am Coll Cardiol. 2005;46:1249–57.

    Article  CAS  PubMed  Google Scholar 

  41. Nicholls SJ, Kastelein JJ, Schwartz GG, Bash D, Rosenson RS, Cavender MA, et al. Varespladib and cardiovascular events in patients with an acute coronary syndrome: the VISTA-16 randomized clinical trial. JAMA. 2014;311(3):252–62.

    Article  CAS  PubMed  Google Scholar 

  42. Zalewski A, Macphee C. Role of lipoprotein-associated phospholipase A2 in atherosclerosis: biology, epidemiology, and possible therapeutic target. Arterioscler Thromb Vasc Biol. 2005;25:923–31.

    Article  CAS  PubMed  Google Scholar 

  43. Caslake MJ, Packard CJ, Suckling KE, Holmes SD, Chamberlain P, Macphee CH. Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase: a potential new risk factor for coronary artery disease. Atherosclerosis. 2000;150:413–9.

    Article  CAS  PubMed  Google Scholar 

  44. Macphee CH, Moores KE, Boyd HF, Dhanak D, Ife RJ, Leach CA, et al. Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase, generates two bioactive products during the oxidation of low-density lipoprotein: use of a novel inhibitor. Biochem J. 1999;338:479–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Packard CJ, O’Reilly DS, Caslake MJ, McMahon AD, Ford I, Cooney J, et al. Lipoprotein-associated phospholipase A2 as an independent predictor of coronary heart disease. West of Scotland Coronary Prevention Study Group. N Engl J Med. 2000;343:1148–55.

    Article  CAS  PubMed  Google Scholar 

  46. Ballantyne CM, Hoogeveen RC, Bang H, Coresh J, Folsom AR, Heiss G, et al. Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident coronary heart disease in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) study. Circulation. 2004;109:837–42.

    Article  CAS  PubMed  Google Scholar 

  47. Koenig W, Khuseyinova N, Lowel H, Trischler G, Meisinger C. Lipoprotein-associated phospholipase A2 adds to risk prediction of incident coronary events by C-reactive protein in apparently healthy middle-aged men from the general population: results from the 14-year follow-up of a large cohort from southern Germany. Circulation. 2004;110:1903–8.

    Article  CAS  PubMed  Google Scholar 

  48. O’Donoghue M, Morrow DA, Sabatine MS, Murphy SA, McCabe CH, Cannon CP, et al. Lipoprotein-associated phospholipase A2 and its association with cardiovascular outcomes in patients with acute coronary syndromes in the PROVE IT-TIMI 22 (PRavastatin Or atorVastatin Evaluation and Infection Therapy-Thrombolysis In Myocardial Infarction) Trial. Circulation. 2006;113:1745–52.

    Article  PubMed  Google Scholar 

  49. STABILITY Investigators, White HD, Held C, Stewart R, Tarka E, Brown R, et al. Darapladib for preventing ischemic events in stable coronary heart disease. N Engl J Med. 2014;370(18):1702–11.

    Article  CAS  PubMed  Google Scholar 

  50. Mullard A. GSK’s darapladib failures dim hopes for anti-inflammatory heart drugs. Nat Rev Drug Discov. 2014;13(7):481–2.

    Article  CAS  PubMed  Google Scholar 

  51. Bunn RC, Fowlkes JL. Insulin-like growth factor binding protein proteolysis. Trends Endocrinol Metab. 2003;14:176–81.

    Article  PubMed  Google Scholar 

  52. Sangiorgi G, Mauriello A, Bonanno E, Oxvig C, Conover CA, Christiansen M, et al. Pregnancy-associated plasma protein-a is markedly expressed by monocyte-macrophage cells in vulnerable and ruptured carotid atherosclerotic plaques: a link between inflammation and cerebrovascular events. J Am Coll Cardiol. 2006;47:2201–11.

    Article  CAS  PubMed  Google Scholar 

  53. Bayes-Genis A, Conover CA, Overgaard MT, Bailey KR, Christiansen M, Holmes Jr DR, et al. Pregnancy-associated plasma protein A as a marker of acute coronary syndromes. N Engl J Med. 2001;345:1022–9.

    Article  CAS  PubMed  Google Scholar 

  54. Lund J, Qin QP, Ilva T, Pettersson K, Voipio-Pulkki LM, Porela P, et al. Circulating pregnancy-associated plasma protein a predicts outcome in patients with acute coronary syndrome but no troponin I elevation. Circulation. 2003;108:1924–6.

    Article  PubMed  Google Scholar 

  55. Heeschen C, Dimmeler S, Hamm CW, Fichtlscherer S, Simoons ML, Zeiher AM, et al. Pregnancy-associated plasma protein-A levels in patients with acute coronary syndromes: comparison with markers of systemic inflammation, platelet activation, and myocardial necrosis. J Am Coll Cardiol. 2005;45:229–37.

    Article  CAS  PubMed  Google Scholar 

  56. Lund J, Qin QP, Ilva T, Nikus K, Eskola M, Porela P, et al. Pregnancy-associated plasma protein A: a biomarker in acute ST-elevation myocardial infarction (STEMI). Ann Med. 2006;38:221–8.

    Article  CAS  PubMed  Google Scholar 

  57. Cosin-Sales J, Christiansen M, Kaminski P, Oxvig C, Overgaard MT, Cole D, et al. Pregnancy-associated plasma protein A and its endogenous inhibitor, the proform of eosinophil major basic protein (proMBP), are related to complex stenosis morphology in patients with stable angina pectoris. Circulation. 2004;109:1724–8.

    Article  CAS  PubMed  Google Scholar 

  58. Elesber AA, Conover CA, Denktas AE, Lennon RJ, Holmes Jr DR, Overgaard MT, et al. Prognostic value of circulating pregnancy-associated plasma protein levels in patients with chronic stable angina. Eur Heart J. 2006;27:1678–84.

    Article  CAS  PubMed  Google Scholar 

  59. Conti E, Andreotti F, Zuppi C. Pregnancy-associated plasma protein a as predictor of outcome in patients with suspected acute coronary syndromes. Circulation. 2004;109:e211–2.

    Article  CAS  PubMed  Google Scholar 

  60. Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res. 2002;90:251–62.

    CAS  PubMed  Google Scholar 

  61. Newby AC. Metalloproteinases and vulnerable atherosclerotic plaques. Trends Cardiovasc Med. 2007;17(8):253–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest. 1994;94:2493–503.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Inokubo Y, Hanada H, Ishizaka H, Fukushi T, Kamada T, Okumura K. Plasma levels of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 are increased in the coronary circulation in patients with acute coronary syndrome. Am Heart J. 2001;141:211–7.

    Article  CAS  PubMed  Google Scholar 

  64. Kai H, Ikeda H, Yasukawa H, Kai M, Seki Y, Kuwahara F, et al. Peripheral blood levels of matrix metalloproteases-2 and -9 are elevated in patients with acute coronary syndromes. J Am Coll Cardiol. 1998;32:368–72.

    Article  CAS  PubMed  Google Scholar 

  65. Eckart RE, Uyehara CF, Shry EA, Furgerson JL, Krasuski RA. Matrix metalloproteinases in patients with myocardial infarction and percutaneous revascularization. J Interv Cardiol. 2004;17:27–31.

    Article  PubMed  Google Scholar 

  66. Blankenberg S, Rupprecht HJ, Poirier O, Bickel C, Smieja M, Hafner G, et al. Plasma concentrations and genetic variation of matrix metalloproteinase 9 and prognosis of patients with cardiovascular disease. Circulation. 2003;107:1579–85.

    Article  CAS  PubMed  Google Scholar 

  67. Lubos E, Schnabel R, Rupprecht HJ, Bickel C, Messow CM, Prigge S, et al. Prognostic value of tissue inhibitor of metalloproteinase-1 for cardiovascular death among patients with cardiovascular disease: results from the AtheroGene study. Eur Heart J. 2006;27:150–6.

    Article  CAS  PubMed  Google Scholar 

  68. Cavusoglu E, Ruwende C, Chopra V, Yanamadala S, Eng C, Clark LT, et al. Tissue inhibitor of metalloproteinase-1 (TIMP-1) is an independent predictor of all-cause mortality, cardiac mortality, and myocardial infarction. Am Heart J. 2006;151:1101.e1–8.

    Article  Google Scholar 

  69. Nicholls SJ, Hazen SL. Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2005;25:1102–11.

    Article  CAS  PubMed  Google Scholar 

  70. Eiserich JP, Baldus S, Brennan ML, Ma W, Zhang C, Tousson A, et al. Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science. 2002;296:2391–4.

    Article  CAS  PubMed  Google Scholar 

  71. Fu X, Kassim SY, Parks WC, Heinecke JW. Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase. J Biol Chem. 2001;276:41279–87.

    Article  CAS  PubMed  Google Scholar 

  72. Shabani F, McNeil J, Tippett L. The oxidative inactivation of tissue inhibitor of metalloproteinase-1 (TIMP-1) by hypochlorous acid (HOCl) is suppressed by anti-rheumatic drugs. Free Radic Res. 1998;28:115–23.

    Article  CAS  PubMed  Google Scholar 

  73. Karakas M, Koenig W. Myeloperoxidase production by macrophage and risk of atherosclerosis. Curr Atheroscler Rep. 2012;14(3):277–83.

    Article  CAS  PubMed  Google Scholar 

  74. Shah PK. Jekyll and Hyde of HDL: a lipoprotein with a split personality. Eur Heart J. 2013;34(46):3531–4.

    Article  PubMed  Google Scholar 

  75. Huang Y, DiDonato JA, Levison BS, Schmitt D, Li L, Wu Y, et al. An abundant dysfunctional apolipoprotein A1 in human atheroma. Nat Med. 2014;20(2):193–203. An interesting study highlighting the concept of dysfunctional HDL and its potential prognostic role.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. DiDonato JA, Aulak K, Huang Y, Wagner M, Gerstenecker G, Topbas C, et al. Site-specific nitration of apolipoprotein A-I at tyrosine 166 is both abundant within human atherosclerotic plaque and dysfunctional. J Biol Chem. 2014;289(15):10276–92.

    Article  CAS  PubMed  Google Scholar 

  77. Khurana R, Moons L, Shafi S, Luttun A, Collen D, Martin JF, et al. Placental growth factor promotes atherosclerotic intimal thickening and macrophage accumulation. Circulation. 2005;111:2828–36.

    Article  CAS  PubMed  Google Scholar 

  78. Iyer S, Acharya KR. Role of placenta growth factor in cardiovascular health. Trends Cardiovasc Med. 2002;12:128–34.

    Article  CAS  PubMed  Google Scholar 

  79. Heeschen C, Dimmeler S, Fichtlscherer S, Hamm CW, Berger J, Simoons ML, et al. Prognostic value of placental growth factor in patients with acute chest pain. J Am Med Assoc. 2004;291:435–41.

    Article  CAS  Google Scholar 

  80. Lenderink T, Heeschen C, Fichtlscherer S, Dimmeler S, Hamm CW, Zeiher AM, et al. Elevated placental growth factor levels are associated with adverse outcomes at four-year follow-up in patients with acute coronary syndromes. J Am Coll Cardiol. 2006;47:307–11.

    Article  CAS  PubMed  Google Scholar 

  81. Namiki M, Kawashima S, Yamashita T, Ozaki M, Hirase T, Ishida T, et al. Local overexpression of monocyte chemoattractant protein-1 at vessel wall induces infiltration of macrophages and formation of atherosclerotic lesion: synergism with hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2002;22:115–20.

    Article  CAS  PubMed  Google Scholar 

  82. Inoue S, Egashira K, Ni W, Kitamoto S, Usui M, Otani K, et al. Anti-monocyte chemoattractant protein-1 gene therapy limits progression, and destabilization of established atherosclerosis in apolipoprotein E-knockout mice. Circulation. 2002;106:2700–6.

    Article  CAS  PubMed  Google Scholar 

  83. Herder C, Baumert J, Thorand B, Martin S, Lowel H, Kolb H, et al. Chemokines and incident coronary heart disease: results from the MONICA/KORA Augsburg case-cohort study, 1984–2002. Arterioscler Thromb Vasc Biol. 2006;26:2147–52.

    Article  CAS  PubMed  Google Scholar 

  84. Jessup W, Kritharides L, Stocker R. Lipid oxidation in atherogenesis: an overview. Biochem Soc Trans. 2004;32:134–8.

    Article  CAS  PubMed  Google Scholar 

  85. Meisinger C, Baumert J, Khuseyinova N, Loewel H, Koenig W. Plasma oxidized low-density lipoprotein, a strong predictor for acute coronary heart disease events in apparently healthy, middle-aged men from the general population. Circulation. 2005;112:651–7.

    Article  CAS  PubMed  Google Scholar 

  86. Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Hong SN1, Gona P, Fontes JD, Oyama N, Chan RH, Kenchaiah S, et al. Atherosclerotic biomarkers and aortic atherosclerosis by cardiovascular magnetic resonance imaging in the Framingham Heart Study. J Am Heart Assoc. 2013;2(6):e000307. doi:10.1161/JAHA.113.000307.

  89. Shah PK. Screening asymptomatic subjects for subclinical atherosclerosis: can we, does it matter, and should we? J Am Coll Cardiol. 2010;56(2):98–105.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Prediman Shah declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Shah.

Additional information

This article is part of the Topical Collection on Lipid Abnormalities and Cardiovascular Prevention

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, P.K. Biomarkers of Plaque Instability. Curr Cardiol Rep 16, 547 (2014). https://doi.org/10.1007/s11886-014-0547-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-014-0547-7

Keywords

Navigation