Skip to main content
Log in

T-Wave Alternans as an Arrhythmic Risk Stratifier: State of the Art

  • Invasive Electrophysiology and Pacing (J Singh, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Microvolt level T-wave alternans (MTWA), a phenomenon of beat-to-beat variability in the repolarization phase of the ventricles, has been closely associated with an increased risk of ventricular tachyarrhythmic events (VTE) and sudden cardiac death (SCD) during medium- and long-term follow-up. Recent observations also suggest that heightened MTWA magnitude may be closely associated with short-term risk of impending VTE. At the subcellular and cellular level, perturbations in calcium transport processes likely play a primary role in the genesis of alternans, which then secondarily lead to alternans of action potential morphology and duration (APD). As such, MTWA may play a role not only in risk stratification but also more fundamentally in the pathogenesis of VTE. In this paper, we outline recent advances in understanding the pathogenesis of MTWA and also the utility of T-wave alternans testing for clinical risk stratification. We also highlight emerging clinical applications for MTWA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of outstanding importance

  1. Hering HE. Das Wesen des Herzalternans. Munchen Med Wchenshr. 1908;4:1417–21.

    Google Scholar 

  2. Ritzenberg AL, Adam DR, Cohen RJ. Period multiplying-evidence for nonlinear behavior of the canine heart. Nature. 1984;307:159–61.

    Article  PubMed  CAS  Google Scholar 

  3. Smith JM, Clancy EA, Valeri CR, Ruskin JN, Cohen RJ. Electrical alternans and cardiac electrical instability. Circulation. 1988;77:110–21.

    Article  PubMed  CAS  Google Scholar 

  4. Rosenbaum DS, Jackson LE, Smith JM, Garan H, Ruskin JN, Cohen RJ. Electrical alternans and vulnerability to ventricular arrhythmias. N Engl J Med. 1994;330:235–41.

    Article  PubMed  CAS  Google Scholar 

  5. Goldhaber JI, Xie LH, Duong T, Motter C, Khuu K, Weiss JN. Action potential duration restitution and alternans in rabbit ventricular myocytes: the key role of intracellular calcium cycling. Circ Res. 2005;96:459–66.

    Article  PubMed  CAS  Google Scholar 

  6. Diaz ME, Eisner DA, O'Neill SC. Depressed ryanodine receptor activity increases variability and duration of the systolic Ca2+ transient in rat ventricular myocytes. Circ Res. 2002;91:585–93.

    Article  PubMed  CAS  Google Scholar 

  7. Chudin E, Goldhaber J, Garfinkel A, Weiss J, Kogan B. Intracellular Ca(2+) dynamics and the stability of ventricular tachycardia. Biophys J. 1999;77:2930–41.

    Article  PubMed  CAS  Google Scholar 

  8. Jordan PN, Christini DJ. Action potential morphology influences intracellular calcium handling stability and the occurrence of alternans. Biophys J. 2006;90:672–80.

    Article  PubMed  CAS  Google Scholar 

  9. Kockskamper J, Zima AV, Blatter LA. Modulation of sarcoplasmic reticulum Ca2+ release by glycolysis in cat atrial myocytes. J Physiol. 2005;564(Pt 3):697–714.

    Article  PubMed  Google Scholar 

  10. Hüser J, Wang YG, Sheehan KA, Cifuentes F, Lipsius SL, Blatter LA. Functional coupling between glycolysis and excitation-contraction coupling underlies alternans in cat heart cells. J Physiol. 2000;524(Pt 3):795–806.

    Article  PubMed  Google Scholar 

  11. Pastore JM, Girouard SD, Laurita KR, Akar FG, Rosenbaum DS. Mechanism linking T-wave alternans to the genesis of cardiac fibrillation. Circulation. 1999;99:1385–94.

    Article  PubMed  CAS  Google Scholar 

  12. Pastore JM, Rosenbaum DS. Role of structural barriers in the mechanism of alternans-induced reentry. Circ Res. 2000;87:1157–63.

    Article  PubMed  CAS  Google Scholar 

  13. Laurita KR, Pastore JM, Rosenbaum DS. How restitution, repolarization, and alternans form arrhythmogenic substrates: insights from high-resolution optical mapping. In: Zipes DP, Jalife J, editors. Cardiac Electrophysiology: From Cell to Bedside. 2nd ed. Philadelphia, PA: W.B. Saunders; 1999. p. 239–48.

    Google Scholar 

  14. Fox JJ, McHarg JL, Gilmour Jr RF. Ionic mechanism of electrical alternans. Am J Physiol Heart Circ Physiol. 2002;282:H516–30.

    PubMed  CAS  Google Scholar 

  15. Kameyama M, Hirayama Y, Saitoh H, Maruyama M, Atarashi H, Takano T. Possible contribution of the sarcoplasmic reticulum Ca(2+) pump function to electrical and mechanical alternans. J Electrocardiol. 2003;36:125–35.

    Article  PubMed  Google Scholar 

  16. Kihara Y, Morgan JP. Abnormal Cai2+ handling is the primary cause of mechanical alternans: study in ferret ventricular muscles. Am J Physiol. 1991;261(6 Pt 2):H1746–55.

    PubMed  CAS  Google Scholar 

  17. Lab MJ, Lee JA. Changes in intracellular calcium during mechanical alternans in isolated ferret ventricular muscle. Circ Res. 1990;66:585–95.

    Article  PubMed  CAS  Google Scholar 

  18. Spear JF, Moore EN. A comparison of alternation in myocardial action potentials and contractility. Am J Physiol. 1971;220:1708–16.

    PubMed  CAS  Google Scholar 

  19. Mahajan A, Sato D, Shiferaw Y, Baher A, Xie LH, Peralta R, et al. Modifying L-type calcium current kinetics: consequences for cardiac excitation and arrhythmia dynamics. Biophys J. 2008;94:411–23.

    Article  PubMed  CAS  Google Scholar 

  20. Hua F, Johns DC, Gilmour Jr RF. Suppression of electrical alternans by overexpression of HERG in canine ventricular myocytes. Am J Physiol Heart Circ Physiol. 2004;286:H2342–51.

    Article  PubMed  CAS  Google Scholar 

  21. Allen DG, Orchard CH. Myocardial contractile function during ischemia and hypoxia. Circ Res. 1987;60:153–68.

    Article  PubMed  CAS  Google Scholar 

  22. Armoundas AA. Mechanism of abnormal sarcoplasmic reticulum calcium release in canine left-ventricular myocytes results in cellular alternans. IEEE Trans Biomed Eng. 2009;56:220–8.

    Article  PubMed  Google Scholar 

  23. Weiss JN, Karma A, Shiferaw Y, Chen PS, Garfinkel A, Qu Z. From pulsus to pulseless: the saga of cardiac alternans. Circ Res. 2006;98:1244–53.

    Article  PubMed  CAS  Google Scholar 

  24. Narayan SM, Bayer JD, Lalani G, Trayanova NA. Action potential dynamics explain arrhythmic vulnerability in human heart failure: a clinical and modeling study implicating abnormal calcium handling. J Am Coll Cardiol. 2008;52:1782–92.

    Article  PubMed  Google Scholar 

  25. Pruvot EJ, Katra RP, Rosenbaum DS, Laurita KR. Role of calcium cycling vs restitution in the mechanism of repolarization alternans. Circ Res. 2004;94:1083–10.

    Article  PubMed  CAS  Google Scholar 

  26. Merchant FM, Armoundas AA. Role of substrate and triggers in the genesis of cardiac alternans, from the myocyte to the whole heart: implications for therapy. Circulation. 2012;125:539–49.

    Article  PubMed  Google Scholar 

  27. Choi BR, Salama G. Simultaneous maps of optical action potentials and calcium transients in guinea-pig hearts: mechanisms underlying concordant alternans. J Physiol. 2000;529(Pt 1):171–88.

    Article  PubMed  CAS  Google Scholar 

  28. Laurita KR, Girouard SD, Akar FG, Rosenbaum DS. Modulated dispersion explains changes in arrhythmia vulnerability during premature stimulation of the heart. Circulation. 1998;98:2774–80.

    Article  PubMed  CAS  Google Scholar 

  29. Laurita KR, Rosenbaum DS. Implications of ion channel diversity to ventricular repolarization and arrhythmogenesis: insights from high resolution optical mapping. Can J Cardiol. 1997;13:1069–76.

    PubMed  CAS  Google Scholar 

  30. Lee HC, Mohabir R, Smith N, Franz MR, Clusin WT. Effect of ischemia on calcium-dependent fluorescence transients in rabbit hearts containing indo 1. Correlation with monophasic action potentials and contraction. Circulation. 1988;78:1047–59.

    Article  PubMed  CAS  Google Scholar 

  31. Qian YW, Clusin WT, Lin SF, Han J, Sung RJ. Spatial heterogeneity of calcium transient alternans during the early phase of myocardial ischemia in the blood-perfused rabbit heart. Circulation. 2001;104:2082–7.

    Article  PubMed  CAS  Google Scholar 

  32. Wu Y, Clusin WT. Calcium transient alternans in blood-perfused ischemic hearts: observations with fluorescent indicator fura red. Am J Physiol. 1997;273(5 Pt 2):H2161–9.

    PubMed  CAS  Google Scholar 

  33. Armoundas AA. Mechanism of abnormal sarcoplasmic reticulum calcium release in canine left ventricular myocytes results in cellular alternans. IEEE Trans Biomed Eng. 2009:In press.

  34. Kuo CS, Amlie JP, Munakata K, Reddy CP, Surawicz B. Dispersion of monophasic action potential durations and activation times during atrial pacing, ventricular pacing, and ventricular premature stimulation in canine ventricles. Cardiovasc Res. 1983;17:152–61.

    Article  PubMed  CAS  Google Scholar 

  35. Chinushi M, Restivo M, Caref EB, El-Sherif N. Electrophysiological basis of arrhythmogenicity of QT/T alternans in the long-QT syndrome: tridimensional analysis of the kinetics of cardiac repolarization. Circ Res. 1998;83:614–28.

    Article  PubMed  CAS  Google Scholar 

  36. Chinushi M, Kozhevnikov D, Caref EB, Restivo M, El-Sherif N. Mechanism of discordant T wave alternans in the in vivo heart. J Cardiovasc Electrophysiol. 2003;14:632–8.

    Article  PubMed  Google Scholar 

  37. Wilson LD, Jeyaraj D, Wan X, Hoeker GS, Said TH, Gittinger M, et al. Heart failure enhances susceptibility to arrhythmogenic cardiac alternans. Hear Rhythm. 2009;6:251–9.

    Article  Google Scholar 

  38. del Monte F, Lebeche D, Guerrero JL, Tsuji T, Doye AA, Gwathmey JK, et al. Abrogation of ventricular arrhythmias in a model of ischemia and reperfusion by targeting myocardial calcium cycling. Proc Natl Acad Sci U S A. 2004;101:5622–7.

    Article  PubMed  Google Scholar 

  39. •• Cutler MJ, Wan X, Plummer BN, Liu H, Deschenes I, Laurita KR, et al. Targeted sarcoplasmic reticulum Ca2+ ATPase 2a gene delivery to restore electrical stability in the failing heart. Circulation. 2012;126:2095–104. This paper highlights the close relationship between contractile dysfunction and arrhythmogenesis in pre-clinical models.

    Article  PubMed  CAS  Google Scholar 

  40. Takei M, Sasaki Y, Yonezawa T, Lakhe M, Aruga M, Kiyosawa K. The autonomic control of the transmural dispersion of ventricular repolarization in anesthetized dogs. J Cardiovasc Electrophysiol. 1999;10:981–9.

    Article  PubMed  CAS  Google Scholar 

  41. MERIT-HF. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet. 1999;353:2001–7.

    Article  Google Scholar 

  42. Poole-Wilson PA, Swedberg K, Cleland JG, Di Lenarda A, Hanrath P, Komajda M, et al. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. Lancet. 2003;362:7–13.

    Article  PubMed  CAS  Google Scholar 

  43. Ng GA, Brack KE, Patel VH, Coote JH. Autonomic modulation of electrical restitution, alternans and ventricular fibrillation initiation in the isolated heart. Cardiovasc Res. 2007;73:750–60.

    Article  PubMed  CAS  Google Scholar 

  44. Euler DE, Guo H, Olshansky B. Sympathetic influences on electrical and mechanical alternans in the canine heart. Cardiovasc Res. 1996;32:854–60.

    PubMed  CAS  Google Scholar 

  45. Corr PB, Yamada KA, Witkowski FX. Mechanisms controlling cardiac autonomic function and their relationships to arrhythmogenesis. In: Fozzard HA, Haber E, Jennings RB, et al., editors. The Heart and Cardiovascular System. New York: Raven Press; 1986. p. 1343–404.

    Google Scholar 

  46. Rubart M, Zipes DP. Mechanisms of sudden cardiac death. J Clin Invest. 2005;115:2305–15.

    Article  PubMed  CAS  Google Scholar 

  47. Schwartz PJ, Zipes DP. Autonomic modulation of cardiac arrhythmias. In: Zipes DP, Jalife J, eds. Cardiac Electrophysiology: From Cell to Bedside (3rd ed.): W. B. Saunders. 2000:300–14.

  48. Janse MJ, Schwartz PJ, Wilms-Schopman F, Peters RJ, Durrer D. Effects of unilateral stellate ganglion stimulation and ablation on electrophysiologic changes induced by acute myocardial ischemia in dogs. Circulation. 1985;72:585–95.

    Article  PubMed  CAS  Google Scholar 

  49. Billman GE. A comprehensive review and analysis of 25 years of data from an in vivo canine model of sudden cardiac death: implications for future anti-arrhythmic drug development. Pharmacol Ther. 2006;111:808–35.

    Article  PubMed  CAS  Google Scholar 

  50. Armoundas AA, Hohnloser SH, Ikeda T, Cohen RJ. Can microvolt T-wave alternans testing reduce unnecessary defibrillator implantation? Nat Clin Pract Cardiovasc Med. 2005;2:522–8.

    Article  PubMed  Google Scholar 

  51. Gehi AK, Stein RH, Metz LD, Gomes JA. Microvolt T-wave alternans for the risk stratification of ventricular tachyarrhythmic events: a meta-analysis. J Am Coll Cardiol. 2005;46:75–82.

    Article  PubMed  Google Scholar 

  52. Fishman GI, Chugh SS, Dimarco JP, Albert CM, Anderson ME, Bonow RO, et al. Sudden cardiac death prediction and prevention: report from a National Heart, Lung, and Blood Institute and Heart Rhythm Society Workshop. Circulation. 2010;122:2335–48.

    Article  PubMed  Google Scholar 

  53. Stecker EC, Vickers C, Waltz J, Socoteanu C, John BT, Mariani R, et al. Population-based analysis of sudden cardiac death with and without left ventricular systolic dysfunction: 2-year findings from the Oregon Sudden Unexpected Death Study. J Am Coll Cardiol. 2006;47:1161–6.

    Article  PubMed  Google Scholar 

  54. Rautaharju PM, Surawicz B, Gettes LS, Bailey JJ, Childers R, Deal BJ, et al. AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: part IV: the ST segment, T and U waves, and the QT interval: a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society. Endorsed by the International Society for Computerized Electrocardiology. J Am Coll Cardiol. 2009;53:982–91.

    Article  PubMed  Google Scholar 

  55. Chow T, Kereiakes DJ, Onufer J, Woelfel A, Gursoy S, Peterson BJ, et al. Does microvolt T-wave alternans testing predict ventricular tachyarrhythmias in patients with ischemic cardiomyopathy and prophylactic defibrillators? The MASTER (Microvolt T Wave Alternans Testing for Risk Stratification of Post-Myocardial Infarction Patients) trial. J Am Coll Cardiol. 2008;52:1607–15.

    Article  PubMed  Google Scholar 

  56. Moss AJ, Zareba W, Hall WJ, Klein H, Wilber DJ, Cannom DS, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med. 2002;346:877–83.

    Article  PubMed  Google Scholar 

  57. Gold MR, Ip JH, Costantini O, Poole JE, McNulty S, Mark DB, et al. Role of microvolt T-wave alternans in assessment of arrhythmia vulnerability among patients with heart failure and systolic dysfunction: primary results from the T-wave alternans sudden cardiac death in heart failure trial substudy. Circulation. 2008;118:2022–8.

    Article  PubMed  Google Scholar 

  58. • Hohnloser SH, Ikeda T, Cohen RJ. Evidence regarding clinical use of microvolt T-wave alternans. Hear Rhythm. 2009;6(3):S36–44. This paper elucidates the confounding role that including ICD therapies as an endpoint in risk stratification trials may have on defining the utility of T-wave alternans testing.

    Article  Google Scholar 

  59. Ellenbogen KA, Levine JH, Berger RD, Daubert JP, Winters SL, Greenstein E, et al. Are implantable cardioverter defibrillator shocks a surrogate for sudden cardiac death in patients with nonischemic cardiomyopathy? Circulation. 2006;113:776–82.

    Article  PubMed  Google Scholar 

  60. Germano JJ, Reynolds M, Essebag V, Josephson ME. Frequency and causes of implantable cardioverter-defibrillator therapies: is device therapy proarrhythmic? Am J Cardiol. 2006;97:1255–61.

    Article  PubMed  Google Scholar 

  61. •• Merchant FM, Ikeda T, Pedretti RF, Salerno-Uriarte JA, Chow T, Chan PS, et al. Clinical utility of microvolt T-wave alternans testing in identifying patients at high or low risk of sudden cardiac death. Hear Rhythm. 2012;9:1256–64. This paper highlights the robust role of T-wave alternans testing in clinical risk stratification among patients without ICDs.

    Article  Google Scholar 

  62. Chow T, Kereiakes DJ, Bartone C, Booth T, Schloss EJ, Waller T, et al. Microvolt T-wave alternans identifies patients with ischemic cardiomyopathy who benefit from implantable cardioverter-defibrillator therapy. J Am Coll Cardiol. 2007;49:50–8.

    Article  PubMed  Google Scholar 

  63. • Weiss EH, Merchant FM, d'Avila A, Foley L, Reddy VY, Singh JP, et al. A novel lead configuration for optimal spatio-temporal detection of intracardiac repolarization alternans. Circ Arrhythm Electrophysiol. 2011:407–17. This paper describes a novel intra-cardiac system to optimize detection of repolarization alternans. Optimized detection is an important step in the ability to deliver upstream anti-arrhythmic therapies.

  64. Costantini O, Hohnloser SH, Kirk MM, Lerman BB, Baker II JH, Sethuraman B, et al. The ABCD (Alternans Before Cardioverter Defibrillator) Trial: strategies using T-wave alternans to improve efficiency of sudden cardiac death prevention. J Am Coll Cardiol. 2009;53:471–9.

    Article  PubMed  Google Scholar 

  65. Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R, et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med. 2005;352:225–37.

    Article  PubMed  CAS  Google Scholar 

  66. Bloomfield DM, Steinman RC, Namerow PB, Parides M, Davidenko J, Kaufman ES, et al. Microvolt T-wave alternans distinguishes between patients likely and patients not likely to benefit from implanted cardiac defibrillator therapy: a solution to the Multicenter Automatic Defibrillator Implantation Trial (MADIT) II conundrum. Circulation. 2004;110:1885–9.

    Article  PubMed  Google Scholar 

  67. Reynolds MR, Cohen DJ, Kugelmass AD, Brown PP, Becker ER, Culler SD, et al. The frequency and incremental cost of major complications among medicare beneficiaries receiving implantable cardioverter-defibrillators. J Am Coll Cardiol. 2006;47:2493–7.

    Article  PubMed  Google Scholar 

  68. Zareba W, Moss AJ, le Cessie S, Hall WJ. T wave alternans in idiopathic long QT syndrome. J Am Coll Cardiol. 1994;23:1541–6.

    Article  PubMed  CAS  Google Scholar 

  69. Nearing BD, Huang AH, Verrier RL. Dynamic tracking of cardiac vulnerability by complex demodulation of the T wave. Science. 1991;252:437–40.

    Article  PubMed  CAS  Google Scholar 

  70. Zareba W, Moss AJ, le Cessie S, Locati EH, Robinson JL, Hall WJ, et al. Risk of cardiac events in family members of patients with long QT syndrome. J Am Coll Cardiol. 1995;26:1685–91.

    Article  PubMed  CAS  Google Scholar 

  71. Verrier RL, Nearing BD, Ghanem RN, Olson RE, Garberich RF, Katsiyiannis WT, et al. Elevated T-Wave Alternans Predicts Nonsustained Ventricular Tachycardia in Association with Percutaneous Coronary Intervention in ST-Segment Elevation Myocardial Infarction (STEMI) Patients. J Cardiovasc Electrophysiol. 2012;24:658–63.

    Google Scholar 

  72. Takasugi N, Kubota T, Nishigaki K, Verrier RL, Kawasaki M, Takasugi M, et al. Continuous T-wave alternans monitoring to predict impending life-threatening cardiac arrhythmias during emergent coronary reperfusion therapy in patients with acute coronary syndrome. Europace. 2012;13:708–15.

    Article  Google Scholar 

  73. Nieminen T, Nanbu DY, Datti IP, Vaz GR, Tavares CA, Pegler JR, et al. Antifibrillatory effect of ranolazine during severe coronary stenosis in the intact porcine model. Hear Rhythm. 2011;8:608–14.

    Article  Google Scholar 

  74. Tachibana H, Kubota I, Yamaki M, Watanabe T, Tomoike H. Discordant S-T alternans contributes to formation of reentry: a possible mechanism of reperfusion arrhythmia. Am J Physiol. 1998;275(1 Pt 2):H116–21.

    PubMed  CAS  Google Scholar 

  75. Shimizu W, Antzelevitch C. Cellular and ionic basis for T-wave alternans under long-QT conditions. Circulation. 1999;99:1499–507.

    Article  PubMed  CAS  Google Scholar 

  76. Fox JJ, Riccio ML, Hua F, Bodenschatz E, Gilmour Jr RF. Spatiotemporal transition to conduction block in canine ventricle. Circ Res. 2002;90:289–96.

    Article  PubMed  CAS  Google Scholar 

  77. Qu Z, Garfinkel A, Chen PS, Weiss JN. Mechanisms of discordant alternans and induction of reentry in simulated cardiac tissue. Circulation. 2000;102:1664–70.

    Article  PubMed  CAS  Google Scholar 

  78. Watanabe MA, Fenton FH, Evans SJ, Hastings HM, Karma A. Mechanisms for discordant alternans. J Cardiovasc Electrophysiol. 2001;12:196–206.

    Article  PubMed  CAS  Google Scholar 

  79. Shusterman V, Goldberg A, London B. Upsurge in T-wave alternans and nonalternating repolarization instability precedes spontaneous initiation of ventricular tachyarrhythmias in humans. Circulation. 2006;113:2880–7.

    Article  PubMed  Google Scholar 

  80. Nearing BD, Wellenius GA, Mittleman MA, Josephson ME, Burger AJ, Verrier RL. Crescendo in depolarization and repolarization heterogeneity heralds development of ventricular tachycardia in hospitalized patients with decompensated heart failure. Circ Arrhythm Electrophysiol. 2012;5:84–90.

    Article  PubMed  Google Scholar 

  81. Kim JW, Pak HN, Park JH, Nam GB, Kim SK, Lee HS, et al. Defibrillator electrogram T wave alternans as a predictor of spontaneous ventricular tachyarrhythmias in defibrillator recipients. Circ J. 2009;73:55–62.

    Article  PubMed  Google Scholar 

  82. Armoundas AA, Albert CM, Cohen RJ, Mela T. Utility of implantable cardioverter defibrillator electrograms to estimate repolarization alternans preceding a tachyarrhythmic event. J Cardiovasc Electrophysiol. 2004;15:594–7.

    Article  PubMed  Google Scholar 

  83. Swerdlow CD, Zhou X, Voroshilovsky O, Abeyratne A, Gillberg J. High amplitude T-wave alternans precedes spontaneous ventricular tachycardia or fibrillation in ICD electrograms. Hear Rhythm. 2008;5:670–6.

    Article  Google Scholar 

  84. •• Swerdlow C, Chow T, Das M, Gillis AM, Zhou X, Abeyratne A, et al. Intracardiac electrogram T-wave alternans/variability increases before spontaneous ventricular tachyarrhythmias in implantable cardioverter-defibrillator patients: a prospective, multi-center study. Circulation. 2011;123:1052–60. This paper demonstrates the feasibility of intra-cardiac detection of repolarization alternans in predicting ICD therapy and opens the door to delivery of upstream, abortive anti-arrhythmic therapies.

    Article  PubMed  Google Scholar 

  85. Paz O, Zhou X, Gillberg J, Tseng HJ, Gang E, Swerdlow C. Detection of T-wave alternans using an implantable cardioverter-defibrillator. Hear Rhythm. 2006;3:791–7.

    Article  Google Scholar 

  86. Brunckhorst CB, Shemer I, Mika Y, Ben-Haim SA, Burkhoff D. Cardiac contractility modulation by nonexcitatory currents: studies in isolated cardiac muscle. Eur J Heart Fail. 2006;8:7–15.

    Article  PubMed  Google Scholar 

  87. Winter J, Brack KE, Ng GA. The acute inotropic effects of cardiac contractility modulation (CCM) are associated with action potential duration shortening and mediated by beta1-adrenoceptor signalling. J Mol Cell Cardiol. 2011;51:252–62.

    Article  PubMed  CAS  Google Scholar 

  88. Armoundas AA, Weiss EH, Sayadi O, Laferriere S, Sajja N, Mela T, et al. A novel pacing method to suppress repolarization alternans in vivo: implications for arrhythmia prevention. Heart Rhythm. 2013;10:564–72.

    Google Scholar 

  89. Merchant FM, Dec GW, Singh JP. Implantable sensors for heart failure. Circ Arrhythm Electrophysiol. 2010;3:657–67.

    Article  PubMed  Google Scholar 

  90. Narayan SM, Bode F, Karasik PL, Franz MR. Alternans of atrial action potentials during atrial flutter as a precursor to atrial fibrillation. Circulation. 2002;106:1968–73.

    Article  PubMed  Google Scholar 

  91. Narayan SM, Franz MR, Clopton P, Pruvot EJ, Krummen DE. Repolarization alternans reveals vulnerability to human atrial fibrillation. Circulation. 2011;123:2922–30.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by NIA grant 1R21AG035128, by a Fellowship and a Science Award from the Center for Integration of Medicine and Innovative Technology (CIMIT), a Post-doctoral Fellowship (#12POST9310001) from the American Heart Association and the Deane Institute for Integrative Research in Atrial Fibrillation and Stroke and the Cardiovascular Research Society.

Compliance with Ethics Guidelines

Conflict of Interest

Faisal M. Merchant, Omid Sayadi, Kasra Moazzami, Dheeraj Puppala, and Antonis A. Armoundas declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonis A. Armoundas.

Additional information

This article is part of the Topical Collection on Invasive Electrophysiology and Pacing

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merchant, F.M., Sayadi, O., Moazzami, K. et al. T-Wave Alternans as an Arrhythmic Risk Stratifier: State of the Art. Curr Cardiol Rep 15, 398 (2013). https://doi.org/10.1007/s11886-013-0398-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-013-0398-7

Keywords

Navigation