Skip to main content
Log in

Targeting Left Ventricular Lead Placement to Improve Cardiac Resynchronization Therapy Outcomes

  • Invasive Electrophysiology and Pacing (J Singh, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Although cardiac resynchronization therapy (CRT) has been established as an important treatment modality for heart failure patients, at least one third of CRT recipients do not respond to this therapy or derive minimal benefit from it. The impact of the site of left ventricular (LV) pacing on outcome after CRT has been examined extensively. Initial studies suggested benefit of posterior or lateral sites but subsequent work has yielded conflicting results. There also remain conflicting results of apical vs basal pacing sites. Avoiding LV lead placement at sites of transmural scar is however a viable strategy. In addition, The TARGET and STARTER trials, 2 independent, randomized, prospective studies, have demonstrated that targeting LV lead placement to sites of latest LV mechanical activation as defined by speckle tracking echocardiography remains the most promising method to improve clinical outcome after CRT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of outstanding importance

  1. Abraham WT, Fisher WG, Smith AL, et al. Cardiac resynchronization in chronic heart failure. N Engl J Med. 2002;346:1845–53.

    Article  PubMed  Google Scholar 

  2. Bristow MR, Saxon LA, Boehmer J, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004;350:2140–50.

    Article  PubMed  CAS  Google Scholar 

  3. Auricchio A, Stellbrink C, Sack S, et al. Long-term clinical effect of hemodynamically optimized cardiac resynchronization therapy in patients with heart failure and ventricular conduction delay. J Am Coll Cardiol. 2002;39:2026–33.

    Article  PubMed  Google Scholar 

  4. Cleland JG, Daubert JC, Erdmann E, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352:1539–49.

    Article  PubMed  CAS  Google Scholar 

  5. Yu CM, Bleeker GB, Fung JW, et al. Left ventricular reverse remodeling but not clinical improvement predicts long-term survival after cardiac resynchronization therapy. Circulation. 2005;112:1580–6.

    Article  PubMed  Google Scholar 

  6. Young JB, Abraham WT, Smith AL, et al. Combined cardiac resynchronization and implantable cardioversion defibrillation in advanced chronic heart failure: the MIRACLE ICD Trial. JAMA. 2003;289:2685–94.

    Article  PubMed  Google Scholar 

  7. Fornwalt BK, Sprague WW, BeDell P, et al. Agreement is poor among current criteria used to define response to cardiac resynchronization therapy. Circulation. 2010;121:1985–91.

    Article  PubMed  Google Scholar 

  8. Xiao HB, Roy C, Gibson DG. Nature of ventricular activation in patients with dilated cardiomyopathy: evidence for bilateral bundle branch block. Br Heart J. 1994;72:167–74.

    Article  PubMed  CAS  Google Scholar 

  9. Adelstein EC, Saba S. Usefulness of baseline electrocardiographic QRS complex pattern to predict response to cardiac resynchronization. Am J Cardiol. 2009;103:238–42.

    Article  PubMed  Google Scholar 

  10. Butter C, Auricchio A, Stellbrink C, et al. Effect of resynchronization therapy stimulation site on the systolic function of heart failure patients. Circulation. 2001;104:3026–9.

    Article  PubMed  CAS  Google Scholar 

  11. Rossillo A, Verma A, Saad EB, et al. Impact of coronary sinus lead position on biventricular pacing: mortality and echocardiographic evaluation during long-term follow-up. J Cardiovasc Electrophysiol. 2004;15:1120–5.

    Article  PubMed  Google Scholar 

  12. Dong YX, Powell BD, Asirvatham SJ, et al. Left ventricular lead position for cardiac resynchronization: a comprehensive cinegraphic, echocardiographic, clinical, and survival analysis. Europace. 2012;14:1139–47.

    Article  PubMed  Google Scholar 

  13. Saxon LA, Olshansky B, Volosin K, et al. Influence of left ventricular lead location on outcomes in the COMPANION study. J Cardiovasc Electrophysiol. 2009;20:764–8.

    Article  PubMed  Google Scholar 

  14. Singh JP, Klein HU, Huang DT, et al. Left ventricular lead position and clinical outcome in the multicenter automatic defibrillator implantation trial-cardiac resynchronization therapy (MADIT-CRT) trial. Circulation. 2011;123:1159–66.

    Article  PubMed  Google Scholar 

  15. Gold MR, Auricchio A, Hummel JD, et al. Comparison of stimulation sites within left ventricular veins on the acute hemodynamic effects of cardiac resynchronization therapy. Hear Rhythm. 2005;2:376–81.

    Article  Google Scholar 

  16. Thebault C, Donal E, Meunier C, et al. Sites of left and right ventricular lead implantation and response to cardiac resynchronization therapy observations from the REVERSE trial. Eur Heart J. 2012;33:2662–71.

    Article  PubMed  Google Scholar 

  17. Merchant FM, Heist EK, Nandigam KV, et al. Interlead distance and left ventricular lead electrical delay predict reverse remodeling during cardiac resynchronization therapy. Pacing Clin Electrophysiol. 2010;33:575–82.

    Article  PubMed  Google Scholar 

  18. Vassallo JA, Cassidy DM, Marchlinski FE, et al. Endocardial activation of left bundle branch block. Circulation. 1984;69:914–23.

    Article  PubMed  CAS  Google Scholar 

  19. Kronborg MB, Albertsen AE, Nielsen JC, et al. Long-term clinical outcome and left ventricular lead position in cardiac resynchronization therapy. Europace. 2009;11:1177–82.

    Article  PubMed  Google Scholar 

  20. Adelstein EC, Saba S. Scar burden by myocardial perfusion imaging predicts echocardiographic response to cardiac resynchronization therapy in ischemic cardiomyopathy. Am Heart J. 2007;153:105–12.

    Article  PubMed  Google Scholar 

  21. Adelstein EC, Tanaka H, Soman P, et al. Impact of scar burden by single-photon emission computed tomography myocardial perfusion imaging on patient outcomes following cardiac resynchronization therapy. Eur Heart J. 2011;32:93–103.

    Article  PubMed  Google Scholar 

  22. Mele D, Agricola E, Galderisi M, et al. Echocardiographic myocardial scar burden predicts response to cardiac resynchronization therapy in ischemic heart failure. J Am Soc Echocardiogr. 2009;22:702–8.

    Article  PubMed  Google Scholar 

  23. Bleeker GB, Kaandorp TA, Lamb HJ, et al. Effect of posterolateral scar tissue on clinical and echocardiographic improvement after cardiac resynchronization therapy. Circulation. 2006;113:969–76.

    Article  PubMed  Google Scholar 

  24. Khan FZ, Virdee MS, Read PA, et al. Effect of low-amplitude two-dimensional radial strain at left ventricular pacing sites on response to cardiac resynchronization therapy. J Am Soc Echocardiogr. 2010;23:1168–76.

    Article  PubMed  Google Scholar 

  25. Gold MR, Birgersdotter-Green U, Singh JP, Ellenbogen KA, Yu Y, Meyer TE, et al. The relationship between ventricular electrical delay and left ventricular remodeling with cardiac resynchronization therapy. Eur Heart J. 2011;32:2516–24.

    Article  PubMed  Google Scholar 

  26. Ellenbogen KA, Gold MR, Meyer TE, Fernandez Lozano I, Mittal S, Waggoner AD, et al. Primary results from the SmartDelay determined AV optimization: a comparison with other AV delay methods used in cardiac resynchronization therapy (SMART-AV) trial: a randomized trial comparing empirical, echocardiography-guided, and algorithmic atrioventricular delay programming in cardiac resynchronization therapy. Circulation. 2010;122:2660–8.

    Article  PubMed  Google Scholar 

  27. Friehling M, Chen J, Saba S, et al. A prospective pilot study to evaluate the relationship between acute change in left ventricular synchrony after cardiac resynchronization therapy and patient outcome using a single-injection gated SPECT protocol. Circ Cardiovasc Imaging. 2011;4:532–9.

    Article  PubMed  Google Scholar 

  28. Bilchick KC, Dimaano V, Wu KC, et al. Cardiac magnetic resonance assessment of dyssynchrony and myocardial scar predicts function class improvement following cardiac resynchronization therapy. JACC Cardiovasc Imaging. 2008;1:561–8.

    Article  PubMed  Google Scholar 

  29. Yu CM, Chau E, Sanderson JE, et al. Tissue Doppler echocardiographic evidence of reverse remodeling and improved synchronicity by simultaneously delaying regional contraction after biventricular pacing therapy in heart failure. Circulation. 2002;105:438–45.

    Article  PubMed  Google Scholar 

  30. Bax JJ, Marwick TH, Molhoek SG, et al. Left ventricular dyssynchrony predicts benefit of cardiac resynchronization therapy in patients with end-stage heart failure before pacemaker implantation. Am J Cardiol. 2003;92:1238–40.

    Article  PubMed  Google Scholar 

  31. Gorcsan III J, Tanabe M, Bleeker GB, et al. Combined longitudinal and radial dyssynchrony predicts ventricular response after resynchronization therapy. J Am Coll Cardiol. 2007;50:1476–83.

    Article  PubMed  Google Scholar 

  32. • Gorcsan III J, Oyenuga O, Habib PJ, et al. Relationship of echocardiographic dyssynchrony to long-term survival after cardiac resynchronization therapy. Circulation. 2010;122:1910–8. This prospective longitudinal study demonstrates that the absence of echocardiographic dyssynchrony is associated with worse survival after CRT.

    Article  PubMed  Google Scholar 

  33. Hara H, Oyenuga OA, Tanaka H, et al. The relationship of QRS morphology and mechanical dyssynchrony to long-term outcome following cardiac resynchronization therapy. Eur Heart J. 2012;33:2680–91.

    Article  PubMed  Google Scholar 

  34. Richardson M, Freemantle N, Calvert MJ, et al. Predictors and treatment response with cardiac resynchronization therapy in patients with heart failure characterized by dyssynchrony: a pre-defined analysis from the CARE-HF trial. Eur Heart J. 2007;28:1827–34.

    Article  PubMed  Google Scholar 

  35. Abdelhadi R, Adelstein E, Voigt A, et al. Measures of left ventricular dyssynchrony and the correlation to clinical and echocardiographic response after cardiac resynchronization therapy. Am J Cardiol. 2008;102:598–601.

    Article  PubMed  Google Scholar 

  36. Yu CM, Gorcsan III J, Bleeker GB, et al. Usefulness of tissue Doppler velocity and strain dyssynchrony for predicting left ventricular reverse remodeling response after cardiac resynchronization therapy. Am J Cardiol. 2007;100:1263–70.

    Article  PubMed  Google Scholar 

  37. Pitzalis MV, Iacoviello M, Romito R, et al. Ventricular asynchrony predicts a better outcome in patients with chronic heart failure receiving cardiac resynchronization therapy. J Am Coll Cardiol. 2005;45:65–9.

    Article  PubMed  Google Scholar 

  38. Suffoletto MS, Dohi K, Cannesson M, et al. Novel speckle-tracking radial strain from routine black-and-white echocardiographic images to quantify dyssynchrony and predict response to cardiac resynchronization therapy. Circulation. 2006;113:960–8.

    Article  PubMed  Google Scholar 

  39. Chung ES, Leon AR, Tavazzi L, et al. Results of the Predictors of Response to CRT (PROSPECT) trial. Circulation. 2008;117:2608–16.

    Article  PubMed  Google Scholar 

  40. Bedi M, Suffoletro M, Tanabe M, et al. Effect of concordance between sites of left ventricular pacing and dyssynchrony on acute electrocardiographic and echocardiographic parameters in patients with heart failure undergoing cardiac resynchronization therapy. Clin Cardiol. 2006;29:498–502.

    Article  PubMed  Google Scholar 

  41. Murphy RT, Sigurdsson G, Mulamalla S, et al. Tissue synchronization imaging and optimal left ventricular pacing site in cardiac resynchronization therapy. Am J Cardiol. 2006;97:1615–21.

    Article  PubMed  Google Scholar 

  42. Ansalone G, Giannantoni P, Ricci R, et al. Doppler myocardial imaging to evaluate the effectiveness of pacing sites in patients receiving biventricular pacing. J Am Coll Cardiol. 2002;39:489–99.

    Article  PubMed  Google Scholar 

  43. •• Khan FZ, Virdee MS, Palmer CR, et al. Targeted left ventricular lead placement to guide cardiac resynchronization therapy: the TARGET study: a randomized, controlled trial. J Am Coll Cardiol. 2012;59:1509–18. This randomized, prospective trial demonstrates that a strategy of echo-guided LV lead placement is superior to the routine approach for the primary endpoint of ≥15% reduction in LV end-systolic volume at 6 months in CRT recipients.

    Article  PubMed  Google Scholar 

  44. •• Saba S, Schwartzman D, Jain S, et al. A prospective randomized controlled study of echocardiographic-guided lead placement for cardiac resynchronization therapy: results of the STARTER trial. Hear Rhythm. 2012;9:1581–2. This randomized, prospective trial demonstrates that a strategy of echo-guided LV lead placement is superior to the routine approach for the primary endpoint of death or heart failure hospitalization in CRT recipients.

    Article  Google Scholar 

  45. Forleo GB, Mantica M, Di Biase L, et al. Clinical and procedural outcome of patients implanted with a quadripolar left ventricular lead: early results of a prospective multicenter study. Hear Rhythm. 2012;9:1822–8.

    Article  Google Scholar 

  46. Spragg DD, Dong J, Fetics BJ, et al. Optimal left ventricular endocardial pacing sites for cardiac resynchronization therapy in patients with ischemic cardiomyopathy. J Am Coll Cardiol. 2010;56:774–81.

    Article  PubMed  Google Scholar 

  47. Elencwajg B, Lopez Cabanillas N, Cardinali EL, et al. The Jurdham procedure: endocardial left ventricular lead insertion via a femoral transseptal sheath for cardiac resynchronization therapy pectoral device implantation. Hear Rhythm. 2012;9:1798–804.

    Article  Google Scholar 

  48. Dekker AL, Phelps B, Dijkman B, et al. Epicardial left ventricular lead placement for cardiac resynchronization therapy: optimal pace site selection with pressure-volume loops. J Thorac Cardiovasc Surg. 2004;127:1641–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Jeffrey Liu declares that he has no conflict of interest.

Evan Adelstein has received research support from St. Jude Medical.

Samir Saba has received research funding from Medtronic Inc., Boston Scientific Inc., and St. Jude Medical. He also received intellectual property rights from Medtronic Inc. He has also been a consultant for Spectranetics Inc.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Saba.

Additional information

This article is part of the Topical Collection on Invasive Electrophysiology and Pacing

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Adelstein, E. & Saba, S. Targeting Left Ventricular Lead Placement to Improve Cardiac Resynchronization Therapy Outcomes. Curr Cardiol Rep 15, 390 (2013). https://doi.org/10.1007/s11886-013-0390-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-013-0390-2

Keywords

Navigation