Skip to main content
Log in

The Role of Intracoronary Plaque Imaging with Intravascular Ultrasound, Optical Coherence Tomography, and Near-Infrared Spectroscopy in Patients with Coronary Artery Disease

  • Coronary Heart Disease (S. Virani and S. Naderi, Section Editors)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

The development of multiple diagnostic intracoronary imaging modalities has increased our understanding of coronary atherosclerotic disease. These imaging modalities, intravascular ultrasound (IVUS), optical coherence tomography (OCT), and near-infrared spectroscopy (NIRS), have provided a method to study plaques and introduced the concept of plaque vulnerability. They are being increasingly used for percutaneous coronary intervention (PCI) optimization and are invaluable tools in research studying the pathophysiology of acute coronary syndrome (ACS), in-stent thrombosis and in-stent restenosis. IVUS has the ability to visualize the intracoronary lumen and the vessel wall and can be used to detect early atherosclerotic disease even in the setting of positive arterial remodeling. Studies supporting the use of IVUS to optimize stent deployment and apposition have shown a significant reduction in cardiovascular events. OCT provides even higher resolution imaging and near microscopic detail of plaques, restenoses, and thromboses; thus, it can identify the etiology of ACS. Ongoing trials are evaluating the role of OCT in PCI and using OCT to study stent endothelialization and neointimal proliferation. NIRS is a modality capable of localizing and quantifying lipid core burden. It is usually combined with IVUS and is used to characterize plaque composition. The benefits of NIRS in the setting of ACS have been limited to case reports and series. The utilization of all these intracoronary imaging modalities will continue to expand as their indications for clinical use and research grow. Studies to support their use for PCI optimization resulting in improved outcomes with potential to prevent downstream events are ongoing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schoenhagen P, Nissen S. Understanding coronary artery disease: tomographic imaging with intravascular ultrasound. Heart. 2002;88:91–6.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tuzcu EM, Hobbs RE, Rincon G, Bott-Silverman C, DeFranco AC, Robinson K, et al. Occult and frequent transmission of atherosclerotic coronary disease with cardiac transplantation. Insights from intravascular ultrasound. Circulation. 1995;91:1706–13.

    Article  CAS  PubMed  Google Scholar 

  3. Losordo DW, Rosenfield K, Kaufman J, Pieczek A, Isner JM. Focal compensatory enlargement of human arteries in response to progressive atherosclerosis. In vivo documentation using intravascular ultrasound. Circulation. 1994;89:2570–7.

    Article  CAS  PubMed  Google Scholar 

  4. Tuzcu EM, Kapadia SR, Tutar E, Zadia KM, Hobbs RE, McCarthy PM, et al. High prevalence of coronary atherosclerosis in asymptomatic teenagers and young adults: evidence from intravascular ultrasound. Circulation. 2001;103:2705–10.

    Article  CAS  PubMed  Google Scholar 

  5. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316:1371–5.

    Article  CAS  PubMed  Google Scholar 

  6. Schiele F, Meneveau N, Vuillemenot A, Zhang DD, Gupta S, Mercier M, Danchin N, Bertrand B, Bassand JP. The RESIST study group. Impact of intravascular ultrasound guidance in stent deployment on 6-month restenosis rate: a multicenter, randomized study comparing two strategies—with and without intravascular ultrasound guidance. J Am Coll Cardiol 1998; 320-8.

  7. Oemrawsingh PV, Mintz GS, Schalij MJ, Zwinderman AH, Jukema JW, Wall EE. Intravascular ultrasound guidance improves angiographic and clinical outcome of stent implantation for long coronary artery stenoses. Final results of a randomized comparison with angiographic guidance (TULIP Study). Circulation. 2003;107:62–7.

    Article  PubMed  Google Scholar 

  8. The AVID Investigators. A randomized controlled trial of angiography versus intravascular ultrasound-directed bare-metal coronary stent placement (The AVID Trial). Circ Cardiovasc Intervent. 2009;2:113–23.

    Article  Google Scholar 

  9. The ADAPT-DES Investigators. Relationship between intravascular ultrasound guidance and clinical outcomes after drug-eluting stents. The assessment of dual antiplatelet therapy with drug-eluting stents (ADAPT-DES) Study. Circulation. 2014;129:463–70.

    Article  Google Scholar 

  10. ACCF/AHA/SCAI Practice Guideline. 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention: executive summary. Circulation 2011; 2574-2609.

  11. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254:1178–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tearney GJ, Brezinski ME, Bouma BE, Boppart SA, Pitris C, Southern JF, et al. In vivo endoscopic optical biopsy with optical coherence tomography. Science. 1997;276:2037–9.

    Article  CAS  PubMed  Google Scholar 

  13. Jang IK, Bouma BE, Kang DH, Park SJ, Park SW, Seung KB, et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol. 2002;39:604–9.

    Article  PubMed  Google Scholar 

  14. Kubo T, Matsuo Y, Ino Y, Tanimoto T, Ishibashi K, Komukai K, et al. Optical coherence tomography analysis of attenuated plaques detected by intravascular ultrasound in patients with acute coronary syndromes. Cardiol Res Pract. 2011;2011:687515.

    PubMed  PubMed Central  Google Scholar 

  15. Kashiwagi M, Kitabata H, Ozaki Y, Imanishi T, Akasaka T. Fatty streak assessed by optical coherence tomorgraphy: early atherosclerosis detection. Eur Heart J Cardiovasc Imaging. 2013;2:109.

    Article  Google Scholar 

  16. Taruya A, Tanaka A, Nishiguchi T, Matsuo Y, Ozaki Y, Kashiwagi M, et al. Vasa vasorum restructuring in human atherosclerotic plaque vulnerability: a clinical optical coherence tomography study. J Am Coll Cardiol. 2015;65:2469–77.

    Article  PubMed  Google Scholar 

  17. Suzuki Y, Ikeno F, Koizumi T, Tio F, Yeung AC, Yock PG, et al. In vivo comparison between optical coherence tomography and intravascular ultrasound for detecting small degrees of instent neointima after stent implantation. JACC Cardiovasc Interv. 2008;1:168–73.

    Article  PubMed  Google Scholar 

  18. Kubo T, Akasaka T, Shite J, Suzuki T, Uemura S, Yu B, et al. OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study. JACC Cardiovasc Imaging. 2013;6:1095–104.

    Article  PubMed  Google Scholar 

  19. Bezerra HG, Costa MA, Guagliumi G, Rollins AM, Simon DI. Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. JACC Cardiovasc Interv. 2009;2:1035–46.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Minami Y, Phipps JE, Hoyt T, Milner TE, Ong DS, Soeda T, Vergallo R, Feldman MD, Jang IK. Clinical utility of quantitative bright spots analysis in patients with acute coronary syndrome: an optical coherence tomography study. Int J Cardiovasc Imaging 2015.

  21. Prati F, Uemura S, Souteyrand G, Virmani R, Motreff P, Di Vito L, et al. OCT-based diagnosis and management of STEMI associated with intact fibrous cap. JACC Cardiovasc Imaging. 2013;6:283–7.

    Article  PubMed  Google Scholar 

  22. Higuma T, Soeda T, Abe N, Yamada M, Yokoyama H, Shibutani S, et al. A combined optical coherence tomography and intravascular ultrasound study on plaque rupture, plaque erosion, and calcified nodule in patients with ST-segment elevation myocardial infarction: incidence, morphologic characteristics, and outcomes after percutaneous coronary intervention. JACC Cardiovasc Interv. 2015;8:1166–76.

    Article  PubMed  Google Scholar 

  23. D’Ascenzo F, Barbero U, Cerrato E, Lipinski MJ, Omede P, Montefusco A, et al. Accuracy of intravascular ultrasound and optical coherence tomography in identifying functionally significant coronary stenosis according to vessel diameter: a meta-analysis of 2,581 patients and 2,807 lesions. Am Heart J. 2015;169:663–73.

    Article  PubMed  Google Scholar 

  24. Gomez-Lara J, Brugaletta S, Diletti R, Gogas BD, Farooq V, Onuma Y, et al. Agreement and reproducibility of gray-scale intravascular ultrasound and optical coherence tomography for analysis of the bioreabsorbable vascular scaffold. Catheter Cardiovasc Interv. 2012;79:890–902.

    Article  PubMed  Google Scholar 

  25. Kobayashi Y, Okura H, Kume T, Yamada R, Kobayashi Y, Fukuhara K, et al. Impact of target lesion coronary calcification on stent expansion. Circ J. 2014;78:2209–14.

    Article  PubMed  Google Scholar 

  26. Wijns W, Shite J, Jones MR, Lee SW, Price MJ, Fabbiiocchi F, Barbota E, Akasaka T, Bezerra H, Holmes D. Optical coherence tomography imaging during percutaneous coronary intervention impacts physician decision-making: ILUMIEN I study. Eur Heart J 2015.

  27. Prati F, Di Vito L, Biondi ZG, Occhipinti M, La Manna A, Tamburino C, et al. Angiography alone versus angiography plus optical coherence tomography to guide decision-making during percutaneous coronary intervention: the Centro per la Lotta contro l’Infarto-Optimisation of Percutaneous Coronary Intervention (CLI-OPCI) study. EuroIntervention. 2012;8:823–9.

    Article  PubMed  Google Scholar 

  28. Antonsen L, Thayssen P, Maehara A, Hansen HS, Junker A, Veinen KT, Hansen KN, Hougaard M, Mintz GS, Jensen LO. Optical coherence tomography guided percutaneous coronary intervention with Nobori stent implantation in patients with non-ST-segment-elevation myocardial infarction (OCTACS) trial: difference in strut coverage and dynamic malapposition patterns at 6 months. Circ Cardiovasc Interv 2015.

  29. Soeda T, Uemura S, Park SJ, Jang Y, Lee S, Cho JM, Kim SJ, Vergallo R, Minami Y, Ong DS, Gao L, Lee H, Zhang S, Yu B, Saito Y, Jang IK. Incidence and clinical significance of post-stent OCT findings: one year follow-up study from multicenter registry. Circulation 2015.

  30. Kimura S, Sugiyama T, Hishikari K, Yamakami Y, Sagawa Y, Kojima K, et al. Association of intravascular ultrasound and optical coherence tomography-assessed coronary plaque morphology with periprocedural myocardial injury in patients with stable angina pectoris. Circ J. 2015;79:1944–53.

    Article  PubMed  Google Scholar 

  31. Kini AS, Motoyama S, Vengrenyuk Y, Feig JE, Pena J, Baber U, et al. Multimodality intravascular imaging to predict periprocedural myocardial infarction during percutaneous coronary intervention. JACC Cardiovasc Interv. 2015;8:937–45.

    Article  PubMed  Google Scholar 

  32. Porto I, Di Vito L, Burzotta F, Niccoli G, Trani C, Leone AM, et al. Predictors of periprocedural (type IVa) myocardial infarction, as assessed by frequency-domain optical coherence tomography. Circ Cardiovasc Interv. 2012;5:89–96.

    Article  CAS  PubMed  Google Scholar 

  33. Prati F, Kodama T, Romagnoli E, Gatto L, Di Vito L, Ramazzotti V, et al. Suboptimal stent deployment is associated with subacute stent thrombosis: optical coherence tomography insights from a multicenter matched study. From the CLI Foundation investigators: the CLI-THRO study. Am Heart J. 2015;169:249–56.

    Article  PubMed  Google Scholar 

  34. Ichibori Y, Ohtani T, Nakatani D, Tachibana K, Yamaguchi O, Toda K, Akasaka T, Fukushima N, Sawa Y, Komuro I, Kotani JI, Sakata Y. Optical coherence tomography and intravascular ultrasound evaluation of cardiac allograft vasculopathy with and without intimal neovascularization. Eur Heart J Cardiovasc Imaging 2015.

  35. Bhindi R, Kajander OA, Jolly SS, Kassam S, Lavi S, Niemela K, et al. Culprit lesion thrombus burden after manual thrombectomy or percutaneous coronary intervention-alone in ST-segment elevation myocardial infarction: the optical coherence tomography sub-study of the TOTAL (ThrOmbecTomy versus PCI Alone) trial. Eur Heart J. 2015;36:1892–900.

    Article  PubMed  Google Scholar 

  36. Yamaguchi T, Kubo T, Ino Y, Matsuo Y, Shiono Y, Yamano T, Taruya A, Nishiguchi T, Shimokado A, Orii M, Tanaka A, Hozumi T, Akasaka T. Optical coherence tomography assessment of efficacy of thrombus aspiration in patients undergoing a primary percutaneous coronary intervention for acute ST-elevation myocardial infarction. Coron Artery Dis 2015.

  37. Meneveau N, Ecarnot F, Souteyrand G, Motreff P, Caussin C, Van Belle E, et al. Does optical coherence tomography optimize results of stenting? Rationale and study design. Am Heart J. 2014;168:175–81.

    Article  PubMed  Google Scholar 

  38. Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868–74.

    Article  CAS  PubMed  Google Scholar 

  39. Jang IK. Near infrared spectroscopy: another toy or indispensable diagnostic tool? Circ Cardiovasc Interv. 2012;5:10–1.

    Article  PubMed  Google Scholar 

  40. Waxman S, Dixon SR, L’Allier P, Moses JW, Peterson JL, Cutlip D, et al. In vivo validation of a catheter-based near-infrared spectroscopy system for detection of lipid core coronary plaques: initial results of the SPECTACL study. JACC Cardiovasc Imaging. 2009;2:858–68.

    Article  PubMed  Google Scholar 

  41. TVC Imaging System. 2015; available from: http://www.infraredx.com/tvc-imaging-system/.

  42. Gardner CM, Tan H, Hull EL, Lisauskas JB, Sum ST, Meese TM, et al. Detection of lipid core coronary plaques in autopsy specimens with a novel catheter-based near-infrared spectroscopy system. JACC Cardiovasc Imaging. 2008;1:638–48.

    Article  PubMed  Google Scholar 

  43. Kini AS, Baber U, Kovacic JC, Limaye A, Ali ZA, Sweeny J, et al. Changes in plaque lipid content after short-term intensive versus standard statin therapy: the YELLOW trial (reduction in yellow plaque by aggressive lipid-lowering therapy). J Am Coll Cardiol. 2013;62:21–9.

    Article  CAS  PubMed  Google Scholar 

  44. Abdelmeguid AE, Topol EJ, Whitlow PL, Sapp SK, Ellis SG. Significance of mild transient release of creatinine kinase-MD fraction after percutaneous coronary interventions. Circulation. 1996;94:1528–36.

    Article  CAS  PubMed  Google Scholar 

  45. Stone GW, Maehara A, Muller JE, Rizik DG, Shunk KA, Ben-Yehuda O, et al. Plaque characterization to inform the prediction and prevention of periprocedural myocardial infarction during percutaneous coronary intervention: the CANARY trial (Coronary Assessment by Near-infrared of Atherosclerotic Rupture-prone Yellow). JACC Cardiovasc Interv. 2015;8:927–36.

    Article  PubMed  Google Scholar 

  46. Goldstein JA, Mani B, Dixon SR, Brilakis ES, Grines CL, Rizik DG, et al. Detection of lipid-core plaques by intracoronary near-infrared spectroscopy identifies high risk of periprocedural myocardial infarction. Circ Cardiovasc Interv. 2011;4:429–37.

    Article  PubMed  Google Scholar 

  47. Madder RD, Goldstein JA, Madden SP, Puri R, Wolski K, Hendricks M, et al. Detection by near-infrared spectroscopy of large lipid core plaques at culprit sites in patients with acute ST-segment elevation myocardial infarction. JACC Cardiovasc Interv. 2013;6:838–46.

    Article  PubMed  Google Scholar 

  48. Madder RD, Husaini M, Davis AT, Van Oosterhout S, Harnek J, Gotberg M, Erlinge D. Detection by near-infrared spectroscopy of large lipid cores at culprit sites in patients with non-ST-segment elevation myocardial infarction and unstable angina. Catheter Cardiovasc Interv 2014.

  49. Oemrawsingh RM, Cheng JM, Garcia-Garcia HM, van Geuns RJ, de Boer SP, Simsek C, et al. Near-infrared spectroscopy predicts cardiovascular outcome in patients with coronary artery disease. J Am Coll Cardiol. 2014;64:2510–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Hoang V and Grounds J contributed equally to the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahboob Alam.

Ethics declarations

Conflict of Interest

Vu Hoang, Jill Grounds, Don Pham, Salim Virani, Ihab Hamzeh, Athar Mahmood Qureshi, Nasser Lakkis, and Mahboob Alam declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Coronary Heart Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoang, V., Grounds, J., Pham, D. et al. The Role of Intracoronary Plaque Imaging with Intravascular Ultrasound, Optical Coherence Tomography, and Near-Infrared Spectroscopy in Patients with Coronary Artery Disease. Curr Atheroscler Rep 18, 57 (2016). https://doi.org/10.1007/s11883-016-0607-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-016-0607-0

Keywords

Navigation