Skip to main content

Advertisement

Log in

Pharmacogenetics of Lipid-Lowering Agents: Precision or Indecision Medicine?

  • Genetics (A. Marian, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Lipid-lowering medications, particularly statins, have been a popular target for pharmacogenetic studies. A handful of genes have shown promise for predicting response to therapy from the perspective of lipid lowering, as well as myopathy. A number of genes have been implicated and have biological plausibility based on their involvement with the pharmacokinetics or pharmacodynamics of statins or other lipid-lowering medications. The level of confidence and replication of these findings varies, although several associations are likely true. Novel classes of lipid-lowering therapy have opened up new possibilities in the treatment of severe inherited forms of dyslipidemia, making the identification of such mutations an important pharmacogenetic predictor of failure of standard therapy, with potential response to novel therapy. Advances in next-generation sequencing technology bring the application of pharmacogenetics even closer to routine clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lipinski MJ, Benedetto U, Escarcega RO, et al. The impact of proprotein convertase subtilisin-kexin type 9 serine protease inhibitors on lipid levels and outcomes in patients with primary hypercholesterolaemia: a network meta-analysis. Eur Heart J. 2015.

  2. Hegele RA, Gidding SS, Ginsberg HN, et al. Nonstatin low-density lipoprotein-lowering therapy and cardiovascular risk reduction-statement from ATVB council. Arterioscler Thromb Vasc Biol. 2015;35(11):2269–80.

    Article  CAS  PubMed  Google Scholar 

  3. Gryn SE, Hegele RA. Pharmacogenomics, lipid disorders, and treatment options. Clin Pharmacol Ther. 2014;96(1):36–47.

    Article  CAS  PubMed  Google Scholar 

  4. Hu M, Tomlinson B. Pharmacogenomics of lipid-lowering therapies. Pharmacogenomics. 2013;14(8):981–95.

    Article  CAS  PubMed  Google Scholar 

  5. Thompson JF, Man M, Johnson KJ, et al. An association study of 43 SNPs in 16 candidate genes with atorvastatin response. Pharmacogenomics J. 2005;5(6):352–8.

    Article  CAS  PubMed  Google Scholar 

  6. Mega JL, Morrow DA, Brown A, Cannon CP, Sabatine MS. Identification of genetic variants associated with response to statin therapy. Arterioscler Thromb Vasc Biol. 2009;29(9):1310–5.

    Article  CAS  PubMed  Google Scholar 

  7. Hopewell JC, Parish S, Offer A, et al. Impact of common genetic variation on response to simvastatin therapy among 18 705 participants in the Heart Protection Study. Eur Heart J. 2013;34(13):982–92. This GWA sub-study of HPS revealed an association with SNPs in LPA, CELSR2/PSRC1/SORT1, ABCC2, APOE, and SLCO1b1 with LDL cholesterol response to simvastatin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chasman DI, Giulianini F, MacFadyen J, Barratt BJ, Nyberg F, Ridker PM. Genetic determinants of statin-induced low-density lipoprotein cholesterol reduction: the Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER) trial. Circ Cardiovasc Genet. 2012;5(2):257–64.

    Article  CAS  PubMed  Google Scholar 

  9. Tomlinson B, Hu M, Lee VW, et al. ABCG2 polymorphism is associated with the low-density lipoprotein cholesterol response to rosuvastatin. Clin Pharmacol Ther. 2010;87(5):558–62.

    Article  CAS  PubMed  Google Scholar 

  10. Postmus I, Trompet S, Deshmukh HA, et al. Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins. Nat Commun. 2014;5:5068. Meta-analysis of GWA studies analyzing the LDL-C response to statins. It confirmed the importance of variants in several genes, namely APOE, LPA, SORT1/CELSR2/PSRC1, and SLCO1B1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Akao H, Polisecki E, Kajinami K, et al. Genetic variation at the SLCO1B1 gene locus and low density lipoprotein cholesterol lowering response to pravastatin in the elderly. Atherosclerosis. 2012;220(2):413–7.

    Article  CAS  PubMed  Google Scholar 

  12. Couvert P, Giral P, Dejager S, et al. Association between a frequent allele of the gene encoding OATP1B1 and enhanced LDL-lowering response to fluvastatin therapy. Pharmacogenomics. 2008;9(9):1217–27.

    Article  CAS  PubMed  Google Scholar 

  13. Thompson JF, Hyde CL, Wood LS, et al. Comprehensive whole-genome and candidate gene analysis for response to statin therapy in the Treating to New Targets (TNT) cohort. Circ Cardiovasc Genet. 2009;2(2):173–81.

    Article  CAS  PubMed  Google Scholar 

  14. Deshmukh HA, Colhoun HM, Johnson T, et al. Genome-wide association study of genetic determinants of LDL-c response to atorvastatin therapy: importance of Lp(a). J Lipid Res. 2012;53(5):1000–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shiffman D, Trompet S, Louie JZ, et al. Genome-wide study of gene variants associated with differential cardiovascular event reduction by pravastatin therapy. PLoS One. 2012;7(5):e38240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chasman DI, Posada D, Subrahmanyan L, Cook NR, Stanton Jr VP, Ridker PM. Pharmacogenetic study of statin therapy and cholesterol reduction. JAMA. 2004;291(23):2821–7.

    Article  CAS  PubMed  Google Scholar 

  17. Krauss RM, Mangravite LM, Smith JD, et al. Variation in the 3-hydroxyl-3-methylglutaryl coenzyme a reductase gene is associated with racial differences in low-density lipoprotein cholesterol response to simvastatin treatment. Circulation. 2008;117(12):1537–44.

    Article  CAS  PubMed  Google Scholar 

  18. Hu M, Tomlinson B. Evaluation of the pharmacokinetics and drug interactions of the two recently developed statins, rosuvastatin and pitavastatin. Expert Opin Drug Metab Toxicol. 2014;10(1):51–65.

    Article  CAS  PubMed  Google Scholar 

  19. Van Booven D, Marsh S, McLeod H, et al. Cytochrome P450 2C9-CYP2C9. Pharmacogenet Genomics. 2010;20(4):277–81.

    PubMed  PubMed Central  Google Scholar 

  20. Niemi M, Pasanen MK, Neuvonen PJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev. 2011;63(1):157–81.

    Article  CAS  PubMed  Google Scholar 

  21. Tirona RG, Leake BF, Merino G, Kim RB. Polymorphisms in OATP-C: identification of multiple allelic variants associated with altered transport activity among European- and African-Americans. J Biol Chem. 2001;276(38):35669–75.

    Article  CAS  PubMed  Google Scholar 

  22. Peng KW, Bacon J, Zheng M, Guo Y, Wang MZ. Ethnic variability in the expression of hepatic drug transporters: absolute quantification by an optimized targeted quantitative proteomic approach. Drug Metab Dispos. 2015;43(7):1045–55.

    Article  CAS  PubMed  Google Scholar 

  23. Salacka A, Binczak-Kuleta A, Kaczmarczyk M, Hornowska I, Safranow K, Clark JS. Possible association of ABCB1:c.3435T>C polymorphism with high-density-lipoprotein-cholesterol response to statin treatment--a pilot study. Bosn J Basic Med Sci. 2014;14(3):144–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Polisecki E, Muallem H, Maeda N, et al. Genetic variation at the LDL receptor and HMG-CoA reductase gene loci, lipid levels, statin response, and cardiovascular disease incidence in PROSPER. Atherosclerosis. 2008;200(1):109–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Leduc V, Bourque L, Poirier J, Dufour R. Role of rs3846662 and HMGCR alternative splicing in statin efficacy and baseline lipid levels in familial hypercholesterolemia. Pharmacogenet Genomics. 2016;26(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  26. Cuevas A, Fernandez C, Ferrada L, et al. HMGCR rs17671591 SNP determines lower plasma LDL-C after atorvastatin therapy in Chilean individuals. Basic Clin Pharmacol Toxicol. 2015.

  27. Swerdlow DI, Preiss D, Kuchenbaecker KB, et al. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. Lancet. 2015;385(9965):351–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Betteridge DJ, Carmena R. The diabetogenic action of statins - mechanisms and clinical implications. Nat Rev Endocrinol. 2016;12(2):99–110.

    CAS  PubMed  Google Scholar 

  29. de Keyser CE, Becker ML, Hofman A, et al. The rs13064411 polymorphism in the WDR52 gene, associated with PCSK9 levels, modifies statin-induced changes in serum total and LDL cholesterol levels. Pharmacogenet Genomics. 2015;25(3):134–42.

    Article  PubMed  Google Scholar 

  30. Hegele RA. Plasma lipoproteins: genetic influences and clinical implications. Nat Rev Genet. 2009;10(2):109–21.

    Article  CAS  PubMed  Google Scholar 

  31. Barber MJ, Mangravite LM, Hyde CL, et al. Genome-wide association of lipid-lowering response to statins in combined study populations. PLoS One. 2010;5(3):e9763.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lagos J, Zambrano T, Rosales A, Salazar LA. APOE polymorphisms contribute to reduced atorvastatin response in Chilean Amerindian subjects. Int J Mol Sci. 2015;16(4):7890–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dube JB, Boffa MB, Hegele RA, Koschinsky ML. Lipoprotein(a): more interesting than ever after 50 years. Curr Opin Lipidol. 2012;23(2):133–40.

    Article  CAS  PubMed  Google Scholar 

  34. O’Brien SE, Schrodi SJ, Ye Z, Brilliant MH, Virani SS, Brautbar A. Differential Lipid Response to Statins Is Associated With Variants in the BUD13-APOA5 Gene Region. J Cardiovasc Pharmacol. 2015;66(2):183–8.

    Article  PubMed  Google Scholar 

  35. Goldberg AS, Hegele RA. Cholesteryl ester transfer protein inhibitors for dyslipidemia: focus on dalcetrapib. Drug Des Devel Ther. 2012;6:251–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Teslovich TM, Musunuru K, Smith AV, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466(7307):707–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Regieli JJ, Jukema JW, Grobbee DE, et al. CETP genotype predicts increased mortality in statin-treated men with proven cardiovascular disease: an adverse pharmacogenetic interaction. Eur Heart J. 2008;29(22):2792–9.

    Article  CAS  PubMed  Google Scholar 

  38. Thompson A, Di Angelantonio E, Sarwar N, et al. Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA. 2008;299(23):2777–88.

    Article  CAS  PubMed  Google Scholar 

  39. Leusink M, Onland-Moret NC, Asselbergs FW, et al. Cholesteryl ester transfer protein polymorphisms, statin use, and their impact on cholesterol levels and cardiovascular events. Clin Pharmacol Ther. 2014;95(3):314–20.

    Article  CAS  PubMed  Google Scholar 

  40. Dube JB, Johansen CT, Hegele RA. Sortilin: an unusual suspect in cholesterol metabolism: from GWAS identification to in vivo biochemical analyses, sortilin has been identified as a novel mediator of human lipoprotein metabolism. Bioessays. 2011;33(6):430–7.

    Article  CAS  PubMed  Google Scholar 

  41. Iakoubova OA, Tong CH, Rowland CM, et al. Association of the Trp719Arg polymorphism in kinesin-like protein 6 with myocardial infarction and coronary heart disease in 2 prospective trials: the CARE and WOSCOPS trials. J Am Coll Cardiol. 2008;51(4):435–43.

    Article  CAS  PubMed  Google Scholar 

  42. Peng P, Lian J, Huang RS, et al. Meta-analyses of KIF6 Trp719Arg in coronary heart disease and statin therapeutic effect. PLoS One. 2012;7(12):e50126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Joy TR, Hegele RA. Narrative review: statin-related myopathy. Ann Intern Med. 2009;150(12):858–68.

    Article  PubMed  Google Scholar 

  44. Mancini GB, Tashakkor AY, Baker S, et al. Diagnosis, prevention, and management of statin adverse effects and intolerance: Canadian Working Group Consensus update. Can J Cardiol. 2013;29(12):1553–68.

    Article  PubMed  Google Scholar 

  45. Group SC, Link E, Parish S, et al. SLCO1B1 variants and statin-induced myopathy--a genomewide study. N Engl J Med. 2008;359(8):789–99.

    Article  Google Scholar 

  46. Hou Q, Li S, Li L, Li Y, Sun X, Tian H. Association between SLCO1B1 gene T521C polymorphism and statin-related myopathy risk: a meta-analysis of case-control studies. Medicine (Baltimore). 2015;94(37):e1268. This meta-analysis confirmed the association with the polymorphism T521C in SLCO1B1 and statin-induced myopathy, especially in patients taking simvastatin.

    Article  CAS  Google Scholar 

  47. Wilke RA, Ramsey LB, Johnson SG, et al. The clinical pharmacogenomics implementation consortium: CPIC guideline for SLCO1B1 and simvastatin-induced myopathy. Clin Pharmacol Ther. 2012;92(1):112–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Becker ML, Elens LL, Visser LE, et al. Genetic variation in the ABCC2 gene is associated with dose decreases or switches to other cholesterol-lowering drugs during simvastatin and atorvastatin therapy. Pharmacogenomics J. 2013;13(3):251–6.

    Article  CAS  PubMed  Google Scholar 

  49. Oh J, Ban MR, Miskie BA, Pollex RL, Hegele RA. Genetic determinants of statin intolerance. Lipids Health Dis. 2007;6:7.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ruano G, Windemuth A, Wu AH, et al. Mechanisms of statin-induced myalgia assessed by physiogenomic associations. Atherosclerosis. 2011;218(2):451–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mangravite LM, Engelhardt BE, Medina MW, et al. A statin-dependent QTL for GATM expression is associated with statin-induced myopathy. Nature. 2013;502(7471):377–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schirris TJ, Ritschel T, Bilos A, Smeitink JA, Russel FG. Statin lactonization by uridine 5′-diphospho-glucuronosyltransferases (UGTs). Mol Pharm. 2015;12(11):4048–55.

    Article  CAS  PubMed  Google Scholar 

  53. Riedmaier S, Klein K, Hofmann U, et al. UDP-glucuronosyltransferase (UGT) polymorphisms affect atorvastatin lactonization in vitro and in vivo. Clin Pharmacol Ther. 2010;87(1):65–73.

    Article  CAS  PubMed  Google Scholar 

  54. DeGorter MK, Tirona RG, Schwarz UI, et al. Clinical and pharmacogenetic predictors of circulating atorvastatin and rosuvastatin concentrations in routine clinical care. Circ Cardiovasc Genet. 2013;6(4):400–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim K, Bolotin E, Theusch E, Huang H, Medina MW, Krauss RM. Prediction of LDL cholesterol response to statin using transcriptomic and genetic variation. Genome Biol. 2014;15(9):460.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Frazier-Wood AC, Ordovas JM, Straka RJ, et al. The PPAR alpha gene is associated with triglyceride, low-density cholesterol and inflammation marker response to fenofibrate intervention: the GOLDN study. Pharmacogenomics J. 2013;13(4):312–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Aslibekyan S, Goodarzi MO, Frazier-Wood AC, et al. Variants identified in a GWAS meta-analysis for blood lipids are associated with the lipid response to fenofibrate. PLoS One. 2012;7(10):e48663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lai CQ, Arnett DK, Corella D, et al. Fenofibrate effect on triglyceride and postprandial response of apolipoprotein A5 variants: the GOLDN study. Arterioscler Thromb Vasc Biol. 2007;27(6):1417–25.

    Article  CAS  PubMed  Google Scholar 

  59. Brautbar A, Barbalic M, Chen F, et al. Rare APOA5 promoter variants associated with paradoxical HDL cholesterol decrease in response to fenofibric acid therapy. J Lipid Res. 2013;54(7):1980–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gao F, Ballantyne C, Ma L, Virani SS, Keinan A, Brautbar A. Rare LPL gene variants attenuate triglyceride reduction and HDL cholesterol increase in response to fenofibric acid therapy in individuals with mixed dyslipidemia. Atherosclerosis. 2014;234(2):249–53. Sequencing of 2385 patients with mixed dyslipidemia identified rare synonymous variants in LPL associated with markedly reduced HDL cholesterol and triglyceride response to fibrate monotherapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hegele RA, Guy J, Ban MR, Wang J. NPC1L1 haplotype is associated with inter-individual variation in plasma low-density lipoprotein response to ezetimibe. Lipids Health Dis. 2005;4:16.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Simon JS, Karnoub MC, Devlin DJ, et al. Sequence variation in NPC1L1 and association with improved LDL-cholesterol lowering in response to ezetimibe treatment. Genomics. 2005;86(6):648–56.

    Article  CAS  PubMed  Google Scholar 

  63. Berthold HK, Laaksonen R, Lehtimaki T, Gylling H, Krone W, Gouni-Berthold I. SREBP-1c gene polymorphism is associated with increased inhibition of cholesterol-absorption in response to ezetimibe treatment. Exp Clin Endocrinol Diabetes. 2008;116(5):262–7.

    Article  CAS  PubMed  Google Scholar 

  64. Ference BA, Majeed F, Penumetcha R, Flack JM, Brook RD. Effect of naturally random allocation to lower low-density lipoprotein cholesterol on the risk of coronary heart disease mediated by polymorphisms in NPC1L1, HMGCR, or both: a 2 × 2 factorial Mendelian randomization study. J Am Coll Cardiol. 2015;65(15):1552–61. This large analysis of 14 studies involving 108,376 patients analyzed the effect of NPC1L1 and HMGCR polymorphisms on LDL-C lowering in response to ezetimibe and statins on coronary heart disease. Patients with both polymorphisms had the lowest reduction in LDL-C and CHD.

    Article  CAS  PubMed  Google Scholar 

  65. Tuteja S, Qu L, Dunbar RL, et al. Abstract 18721: diacylglycerol kinase ? (DGKB) genotype predicts response to niacin induced flushing and changes in insulin in the atherothrombosis intervention in metabolic syndrome with low HDL/high triglycerides and impact on global health outcomes (AIM-HIGH) trial. Circulation. 2013;128 Suppl 22:A18721.

    Google Scholar 

  66. Hegele RA, Ban MR, Cao H, McIntyre AD, Robinson JF, Wang J. Targeted next-generation sequencing in monogenic dyslipidemias. Curr Opin Lipidol. 2015;26(2):103–13.

    Article  CAS  PubMed  Google Scholar 

  67. Cuchel M, Meagher EA, du Toit Theron H, et al. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet. 2013;381(9860):40–6. This phase 3 study of lomitapide, a microsomal triglyceride transfer protein inhibitor, found a significant reduction in LDL cholesterol (50% reduction after 26 weeks of treatment) in patients with HoFH.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Raal FJ, Santos RD, Blom DJ, et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;375(9719):998–1006.

    Article  CAS  PubMed  Google Scholar 

  69. Raal FJ, Honarpour N, Blom DJ, et al. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;385(9965):341–50. This placebo-controlled, randomized control trial of the PCSK9 inhibitor evolocumab in patients with HoFH demonstrated a 30.9% (95% CI: 43.9 - 18.0%) reduction in LDL cholesterol.

    Article  CAS  PubMed  Google Scholar 

  70. Raal FJ, Stein EA, Dufour R, et al. PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;385(9965):331–40.

    Article  CAS  PubMed  Google Scholar 

  71. Brahm AJ, Hegele RA. Chylomicronaemia--current diagnosis and future therapies. Nat Rev Endocrinol. 2015;11(6):352–62.

    Article  CAS  PubMed  Google Scholar 

  72. Stroes ES, Nierman MC, Meulenberg JJ, et al. Intramuscular administration of AAV1-lipoprotein lipase S447X lowers triglycerides in lipoprotein lipase-deficient patients. Arterioscler Thromb Vasc Biol. 2008;28(12):2303–4.

    Article  CAS  PubMed  Google Scholar 

  73. Gaudet D, Brisson D, Tremblay K, et al. Targeting APOC3 in the familial chylomicronemia syndrome. N Engl J Med. 2014;371(23):2200–6. This study of patients with familial chylomicronemia syndrome, and consequentially hypertriglyceridemia, had a remarkable 56-86% reduction in triglyceride levels after receiving 13 weeks of volanesorsen (formerly ISIS 304801), an inhibitor of APOC3 mRNA.

    Article  PubMed  Google Scholar 

  74. Gaudet D, Alexander VJ, Baker BF, et al. Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia. N Engl J Med. 2015;373(5):438–47.

    Article  CAS  PubMed  Google Scholar 

  75. Sacks FM, Stanesa M, Hegele RA. Severe hypertriglyceridemia with pancreatitis: thirteen years’ treatment with lomitapide. JAMA Intern Med. 2014;174(3):443–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

RAH is supported by the Jacob J. Wolfe Distinguished Medical Research Chair, the Edith Schulich Vinet Research Chair in Human Genetics, the Martha G. Blackburn Chair in Cardiovascular Research, and operating grants from the Canadian Institutes of Health Research (Foundation Grant), the Heart and Stroke Foundation of Ontario (T-000353), and Genome Canada through Genome Quebec (award 4530).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeffrey E. Alfonsi or Steven E. Gryn.

Ethics declarations

Conflict of Interest

Jeffrey E. Alfonsi has nothing to disclose.

Robert A. Hegele reports personal fees from Amgen, Aegerion, Pfizer, Sanofi, and Valeant for consultation work.

Steven E. Gryn reports personal fees from Novartis and from Bayer for consultation and advisory board work, respectively.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article if part of the Topical Collection on Genetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfonsi, J.E., Hegele, R.A. & Gryn, S.E. Pharmacogenetics of Lipid-Lowering Agents: Precision or Indecision Medicine?. Curr Atheroscler Rep 18, 24 (2016). https://doi.org/10.1007/s11883-016-0573-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-016-0573-6

Keywords

Navigation