Skip to main content

Advertisement

Log in

Epigenetic Reprogramming in Atherosclerosis

  • Genetics (AJ Marian, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Recent data support the involvement of epigenetic alterations in the pathogenesis of atherosclerosis. The most widely investigated epigenetic mechanism is DNA methylation although also histone code changes occur during the diverse steps of atherosclerosis, such as endothelial cell proliferation, vascular smooth muscle cell (SMC) differentiation, and inflammatory pathway activation. In this review, we focus on the main genes that are epigenetically modified during the atherogenic process, particularly nitric oxide synthase (NOS), estrogen receptors (ERs), collagen type XV alpha 1 (COL15A1), vascular endothelial growth factor receptor (VEGFR), and ten-eleven translocation (TET), which are involved in endothelial dysfunction; gamma interferon (IFN-γ), forkhead box p3 (FOXP3), and tumor necrosis factor-α (TNF-α), associated with atherosclerotic inflammatory process; and p66shc, lectin-like oxLDL receptor (LOX1), and apolipoprotein E (APOE) genes, which are regulated by high cholesterol and homocysteine (Hcy) levels. Furthermore, we also discuss the role of non-coding RNAs (ncRNA) in atherosclerosis. NcRNAs are involved in epigenetic regulation of endothelial function, SMC proliferation, cholesterol synthesis, lipid metabolism, and inflammatory response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473:317–25.

    Article  CAS  PubMed  Google Scholar 

  2. Schleithoff C, Voelter-Mahlknecht S, Dahmke IN, Mahlknecht U. On the epigenetics of vascular regulation and disease. Clin Epigenetics. 2012;4:7.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Barrès R, Osler ME, Yan J, et al. Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab. 2009;10:189–98.

    Article  PubMed  Google Scholar 

  4. Udali S, Guarini P, Moruzzi S, et al. Cardiovascular epigenetics: from DNA methylation to microRNAs. Mol Asp Med. 2013;34:883–901.

    Article  CAS  Google Scholar 

  5. Granger A, Abdullah I, Huebner F, et al. Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice. FASEB J. 2008;22:3549–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Turunen MP, Aavik E, Ylä-Herttuala S. Epigenetics and atherosclerosis. Biochim Biophys Acta. 2009;1790:886–91.

    Article  CAS  PubMed  Google Scholar 

  7. Napoli C, Crudele V, Soricelli A, et al. Primary prevention of atherosclerosis: a clinical challenge for the reversal of epigenetic mechanisms? Circulation. 2012;125:2363–73. First relevant review on the topic of epigenetics and early human atherigenesis.

    Article  PubMed  Google Scholar 

  8. Kim GH, Ryan JJ, Archer SL. The role of redox signaling in epigenetics and cardiovascular disease. Antioxid Redox Signal. 2013;18:1920–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Paneni F, Costantino S, Volpe M, et al. Epigenetic signatures and vascular risk in type 2 diabetes: a clinical perspective. Atherosclerosis. 2013;230:191–7.

    Article  CAS  PubMed  Google Scholar 

  10. Krishna SM, Dear A, Craig JM, Norman PE, Golledge J. The potential role of homocysteine mediated DNA methylation and associated epigenetic changes in abdominal aortic aneurysm formation. Atherosclerosis. 2013;228:295–305.

    Article  CAS  PubMed  Google Scholar 

  11. Sato N, Maehara N, Su GH, Goggins M. Effects of 5-aza-2’-deoxycytidine on matrix metalloproteinase expression and pancreatic cancer cell invasiveness. J Natl Cancer Inst. 2003;19:327.

    Article  Google Scholar 

  12. Borghini A, Cervelli T, Galli A, et al. DNA modifications in atherosclerosis: from the past to the future. Atherosclerosis. 2013;230:202–9.

    Article  CAS  PubMed  Google Scholar 

  13. Leung A, Trac C, Jin W, et al. Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells. Circ Res. 2013;113:266–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Lacolley P, Regnault V, Nicoletti A, Li Z, Michel JB. The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovasc Res. 2012;95:194–204.

    Article  CAS  PubMed  Google Scholar 

  15. Libby P. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32:2045–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Pons D, de Vries FR, van den Elsen PJ, et al. Epigenetic histone acetylation modifiers in vascular remodelling: new targets for therapy in cardiovascular disease. Eur Heart J. 2009;30:266–77.

    Article  CAS  PubMed  Google Scholar 

  17. Napoli C, Paolisso G, Casamassimi A, et al. Effects of nitric oxide on cell proliferation: novel insights. J Am Coll Cardiol. 2013;62:89–95.

    Article  CAS  PubMed  Google Scholar 

  18. Yan MS, Matouk CC, Marsden PA. Epigenetics of the vascular endothelium. J Appl Physiol (1985). 2010;109:916–26.

    Article  CAS  Google Scholar 

  19. Chan Y, Fish JE, D’Abreo C, et al. The cell-specific expression of endothelial nitric-oxide synthase: a role for DNA methylation. J Biol Chem. 2004;279:35087–100.

    Article  CAS  PubMed  Google Scholar 

  20. Breton CV, Park C, Siegmund K, et al. NOS1 methylation and carotid artery intima-media thickness in children. Circ Cardiovasc Genet. 2014;7:116–22.

    Article  CAS  PubMed  Google Scholar 

  21. Connelly JJ, Cherepanova OA, Doss JF, et al. Epigenetic regulation of COL15A1 in smooth muscle cell replicative aging and atherosclerosis. Hum Mol Genet. 2013;22:5107–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Zawadzki C, Chatelain N, Delestre M, et al. Tissue factor pathway inhibitor-2 gene methylation is associated with low expression in carotid atherosclerotic plaques. Atherosclerosis. 2009;204:4–14.

    Article  Google Scholar 

  23. Liu R, Jin Y, Tang WH, et al. Ten-eleven translocation-2 (TET2) is a master regulator of smooth muscle cell plasticity. Circulation. 2013;128:2047–57. This study demonstrated evidence on the involvement of ten-eleven translocation-2 (TET2) in control of vascular smooth muscle cell (VSMC) plasticity and development of vascular disease.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Yamada Y, Nishida T, Horibe H, et al. Identification of hypo- and hypermethylated genes related to atherosclerosis by a genome-wide analysis of DNA methylation. Int J Mol Med. 2014;33:1355–63. An important genome-wide analysis of DNA methylation comparing atheromatous plaque lesions with corresponding plaque-free tissue that have confirmed the contribution of epigenetics to the pathogenesis of atherosclerosis.

    CAS  PubMed  Google Scholar 

  25. Findeisen HM, Gizard F, Zhao Y, et al. Epigenetic regulation of vascular smooth muscle cell proliferation and neointima formation by histone deacetylase inhibition. Arterioscler Thromb Vasc Biol. 2011;31:851–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Xu Y. Transcriptional regulation of endothelial dysfunction in atherosclerosis: an epigenetic perspective. J Biomed Res. 2014;28:47–52.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Fish JE, Matouk CC, Rachlis A, et al. The expression of endothelial nitric-oxide synthase is controlled by a cell-specific histone code. J Biol Chem. 2005;280:24824–38.

    Article  CAS  PubMed  Google Scholar 

  28. Xiao Q, Zeng L, Zhang Z, et al. Sca-1+ progenitors derived from embryonic stem cells differentiate into endothelial cells capable of vascular repair after arterial injury. Arterioscler Thromb Vasc Biol. 2006;26:2244–51.

    Article  CAS  PubMed  Google Scholar 

  29. Zampetaki A, Zeng L, Margariti A, et al. Histone deacetylase 3 is critical in endothelial survival and atherosclerosis development in response to disturbed flow. Circulation. 2010;121:132–42.

    Article  CAS  PubMed  Google Scholar 

  30. Hoeksema MA, Gijbels MJ, Van den Bossche J, et al. Targeting macrophage histone deacetylase 3 stabilizes atherosclerotic lesions. EMBO Mol Med. 2014;6:1124–32. Study that shown a link between histone modification and plaque vulnerability to rupture suggesting that epigenetic mechanisms could represent a potential novel therapeutic target in atherosclerosis.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Cao Q, Rong S, Repa JJ, et al. Histone deacetylase 9 represses cholesterol efflux and alternatively activated macrophages in atherosclerosis development. Arterioscler Thromb Vasc Biol. 2014;34:1871–9.

    Article  CAS  PubMed  Google Scholar 

  32. Zhou B, Margariti A, Zeng L, et al. Splicing of histone deacetylase 7 modulates smooth muscle cell proliferation and neointima formation through nuclear β-catenin translocation. Arterioscler Thromb Vasc Biol. 2011;31:2676–84.

    Article  CAS  PubMed  Google Scholar 

  33. Kavurma MM, Figg N, Bennett MR, et al. Oxidative stress regulates IGF1R expression in vascular smooth-muscle cells via p53 and HDAC recruitment. Biochem J. 2007;407:79–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Han S, Uludag MO, Usanmaz SE, et al. Resveratrol affects histone 3 lysine 27 methylation of vessels and blood biomarkers in DOCA salt-induced hypertension. Mol Biol Rep. 2014. doi:10.1007/s11033-014-3737-x.

  35. Mathew OP, Ranganna K, Yatsu FM. Butyrate, an HDAC inhibitor, stimulates interplay between different posttranslational modifications of histone H3 and differently alters G1-specific cell cycle proteins in vascular smooth muscle cells. Biomed Pharmacother. 2010;64:733–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Pandey D, Sikka G, Bergman Y, et al. Transcriptional regulation of endothelial arginase 2 by histone deacetylase 2. Arterioscler Thromb Vasc Biol. 2014;34:1556–66.

    Article  CAS  PubMed  Google Scholar 

  37. Ji R, Cheng Y, Yue J, et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation. Circ Res. 2007;100:1579–88.

    Article  CAS  PubMed  Google Scholar 

  38. Wang M, Li W, Chang GQ, et al. MicroRNA-21 regulates vascular smooth muscle cell function via targeting tropomyosin 1 in arteriosclerosis obliterans of lower extremities. Arterioscler Thromb Vasc Biol. 2011;31:2044–53.

    Article  CAS  PubMed  Google Scholar 

  39. Li T, Cao H, Zhuang J, et al. Identification of miR-130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis obliterans. Clin Chim Acta. 2011;412:66–70.

    Article  CAS  PubMed  Google Scholar 

  40. Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in development and disease. Cell. 2013;152:1298–307.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Holdt LM, Beutner F, Scholz M, et al. ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler Thromb Vasc Biol. 2010;30:620–7.

    Article  CAS  PubMed  Google Scholar 

  42. Motterle A, Pu X, Wood H, et al. Functional analyses of coronary artery disease associated variation on chromosome 9p21 in vascular smooth muscle cells. Hum Mol Genet. 2012;21:4021–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Holdt LM, Hoffmann S, Sass K, et al. Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet. 2013;9:e1003588.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Papatheodorou L, Weiss N. Vascular oxidant stress and inflammation in hyperhomocysteinemia. Antioxid Redox Signa. 2007;9:1941–58.

    Article  CAS  Google Scholar 

  45. Duell PB, Malinow MR. Homocysteine: an important risk factor for atherosclerotic vascular disease. Curr Opin Lipidol. 1997;8:28–34.

    Article  CAS  PubMed  Google Scholar 

  46. Handy DE, Castro R, Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation. 2011;123:2145–56.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Castro R, Rivera I, Struys EA, et al. Increased homocysteine and S-adenosylhomocysteine concentrations and DNA hypomethylation in vascular disease. Clin Chem. 2003;49:1292.

    Article  CAS  PubMed  Google Scholar 

  48. Hiltunen MO, Turunen MP, Häkkinen TP, et al. DNA hypomethylation and methyltransferase expression in atherosclerotic lesions. Vasc Med. 2002;7:5–11.

    Article  PubMed  Google Scholar 

  49. Lund G, Andersson L, Lauria M, et al. DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E. J Biol Chem. 2004;279:29147–54.

    Article  CAS  PubMed  Google Scholar 

  50. Kim YR, Kim CS, Naqvi A, et al. Epigenetic upregulation of p66shc mediates low-density lipoprotein cholesterol-induced endothelial cell dysfunction. Am J Physiol Heart Circ Physiol. 2012;303:H189–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Napoli C, Martin-Padura I, de Nigris F, et al. Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet. Proc Natl Acad Sci U S A. 2003;100:2112–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Kumar A, Kumar S, Vikram A, et al. Histone and DNA methylation-mediated epigenetic downregulation of endothelial Kruppel-like factor 2 by low-density lipoprotein cholesterol. Arterioscler Thromb Vasc Biol. 2013;33:1936–42.

    Article  CAS  PubMed  Google Scholar 

  53. Mitra S, Khaidakov M, Lu J, Ayyadevara S, et al. Prior exposure to oxidized low-density lipoprotein limits apoptosis in subsequent generations of endothelial cells by altering promoter methylation. Am J Physiol Heart Circ Physiol. 2011;301:H506–13.

    Article  CAS  PubMed  Google Scholar 

  54. Guay SP, Brisson D, Lamarche B, et al. DNA methylation variations at CETP and LPL gene promoter loci: new molecular biomarkers associated with blood lipid profile variability. Atherosclerosis. 2013;228:413–20.

    Article  CAS  PubMed  Google Scholar 

  55. Guay SP, Brisson D, Lamarche B, et al. Epipolymorphisms within lipoprotein genes contribute independently to plasma lipid levels in familial hypercholesterolemia. Epigenetics. 2014;9:718–29.

    Article  CAS  PubMed  Google Scholar 

  56. Newman PE. Can reduced folic acid and vitamin B12 levels cause deficient DNA methylation producing mutations which initiate atherosclerosis? Med Hypotheses. 1999;53:421–4.

    Article  CAS  PubMed  Google Scholar 

  57. Jamaluddin MD, Chen I, Yang F, et al. Homocysteine inhibits endothelial cell growth via DNA hypomethylation of the cyclin A gene. Blood. 2007;110:3648–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Sharma P, Kumar J, Garg G, et al. Detection of altered global DNA methylation in coronary artery disease patients. DNA Cell Biol. 2008;27:357–65.

    Article  CAS  PubMed  Google Scholar 

  59. Zaina S, Lindholm MW, Lund G. Nutrition and aberrant DNA methylation patterns in atherosclerosis: more than just hyperhomocysteinemia? J Nutr. 2005;135:5–8.

    CAS  PubMed  Google Scholar 

  60. Zhu JH, Chen JZ, Wang XX, et al. Homocysteine accelerates senescence and reduces proliferation of endothelial progenitor cells. J Mol Cell Cardiol. 2006;40:648–52.

    Article  CAS  PubMed  Google Scholar 

  61. Richards JB, Valdes AM, Gardner JP, et al. Homocysteine levels and leukocyte telomere length. Atherosclerosis. 2008;200:271–7.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang D, Wen X, Wu W, et al. Homocysteine-related hTERT DNA demethylation contributes to shortened leukocyte telomere length in atherosclerosis. Atherosclerosis. 2013;231:173–9.

    Article  CAS  PubMed  Google Scholar 

  63. Niu PP, Cao Y, Gong T, et al. Hypermethylation of DDAH2 promoter contributes to the dysfunction of endothelial progenitor cells in coronary artery disease patients. J Transl Med. 2014;12:170.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Zaina S, Heyn H, Carmona FJ, et al. A DNA methylation map of human atherosclerosis. Circ Cardiovasc Genet. 2014;7:692–700. An interesting study showing the gain of DNA methylation in atherosclerotic lesions emphasizing the opportunity to use demethylating agents for therapeutic benefit.

  65. Li L, Xie J, Zhang M, Wang S. Homocysteine harasses the imprinting expression of IGF2 and H19 by demethylation of differentially methylated region between IGF2/H19 genes. Acta Biochim Biophys Sin (Shanghai). 2009;41:464–71.

    Article  CAS  Google Scholar 

  66. Flowers E, Froelicher ES, Aouizerat BE. MicroRNA regulation of lipid metabolism. Metabolism. 2013;62:12–20. Relevant review on the topic of miRNAs as emergent players in lipid metabolism.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Rayner KJ, Esau CC, Hussain FN, et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature. 2011;478:404–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Iliopoulos D, Drosatos K, Hiyama Y, et al. MicroRNA-370 controls the expression of microRNA-122 and Cpt1alpha and affects lipid metabolism. J Lipid Res. 2010;51:1513–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Ramírez CM, Rotllan N, Vlassov AV, et al. Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144. Circ Res. 2013;112:1592–601.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Kang MH, Zhang LH, Wijesekara N, et al. Regulation of ABCA1 protein expression and function in hepatic and pancreatic islet cells by miR-145. Arterioscler Thromb Vasc Biol. 2013;33:2724–32.

    Article  CAS  PubMed  Google Scholar 

  71. Zhao R, Feng J, He G. miR-613 regulates cholesterol efflux by targeting LXRα and ABCA1 in PPARγ activated THP-1 macrophages. Biochem Biophys Res Commun. 2014;448:329–34.

    Article  CAS  PubMed  Google Scholar 

  72. Ramirez CM, Dávalos A, Goedeke L, et al. MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arterioscler Thromb Vasc Biol. 2011;31:2707–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Vickers KC, Landstreet SR, Levin MG, et al. MicroRNA-223 coordinates cholesterol homeostasis. Proc Natl Acad Sci U S A. 2014;111:14518–23.

    Article  CAS  PubMed  Google Scholar 

  74. Vinod M, Chennamsetty I, Colin S, et al. miR-206 controls LXRα expression and promotes LXR-mediated cholesterol efflux in macrophages. Biochim Biophys Acta. 2014;1841:827–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Zhang E, Wu Y. MicroRNAs: important modulators of oxLDL-mediated signaling in atherosclerosis. J Atheroscler Thromb. 2013;20:215–27.

    Article  CAS  PubMed  Google Scholar 

  76. Woollard KJ. Immunological aspects of atherosclerosis. Clin Sci (Lond). 2013;125:221–35.

    Article  CAS  Google Scholar 

  77. Wierda RJ, Geutskens SB, Jukema JW, et al. Epigenetics in atherosclerosis and inflammation. J Cell Mol Med. 2010;14:1225–40.

    Article  CAS  PubMed  Google Scholar 

  78. Tao R, de Zoeten EF, Ozkaynak E, et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med. 2007;13:1299–307.

    Article  CAS  PubMed  Google Scholar 

  79. Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis. Annu Rev Immunol. 2009;27:165–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Jia L, Zhu L, Wang JZ, et al. Methylation of FOXP3 in regulatory T cells is related to the severity of coronary artery disease. Atherosclerosis. 2013;228:346–52.

    Article  CAS  PubMed  Google Scholar 

  81. Sahinarslan A, Kocaman SA, Topal S, et al. The relation of serum monocyte chemoattractant protein-1 level with coronary atherosclerotic burden and collateral degree in stable coronary artery disease. Turk Kardiyol Dern Ars. 2011;39:269–75.

    Article  PubMed  Google Scholar 

  82. Wang J, Jiang Y, Yang A, et al. Hyperhomocysteinemia-induced monocyte chemoattractant protein-1 promoter DNA methylation by nuclear factor-κB/DNA methyltransferase 1 in apolipoprotein E-deficient mice. Biores Open Access. 2013;2:118–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Liu XL, Zhang PF, Ding SF, et al. Local gene silencing of monocyte chemoattractant protein-1 prevents vulnerable plaque disruption in apolipoprotein e-knockout mice. PLoS One. 2012;7:33497.

    Article  Google Scholar 

  84. Choi JH, Nam KH, Kim J, et al. Trichostatin A exacerbates atherosclerosis in low density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol. 2005;25:2404–9.

    Article  CAS  PubMed  Google Scholar 

  85. Okamoto H, Fujioka Y, Takahashi A, et al. Trichostatin A, an inhibitor of histone deacetylase, inhibits smooth muscle cell proliferation via induction of p21(WAF1). J Atheroscler Thromb. 2006;13:183–91.

    Article  CAS  PubMed  Google Scholar 

  86. Bekkering S, Quintin J, Joosten LA, et al. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler Thromb Vasc Biol. 2014;34:1731–8. This important study described the effect of oxLDL to induce a long-lasting proinflammatory phenotype in monocytes which accelerates atherosclerosis by proinflammatory cytokine production.

    Article  CAS  PubMed  Google Scholar 

  87. Ansel KM, Djuretic I, Tanasa B, Rao A. Regulation of Th2 differentiation and Il4 locus accessibility. Annu Rev Immunol. 2006;24:607–56.

    Article  CAS  PubMed  Google Scholar 

  88. Floess S, Freyer J, Siewert C, et al. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol. 2007;5:38.

    Article  Google Scholar 

  89. Wang B, Morinobu A, Horiuchi M, et al. Butyrate inhibits functional differentiation of human monocyte-derived dendritic cells. Cell Immunol. 2008;253:54–8.

    Article  CAS  PubMed  Google Scholar 

  90. Kong X, Fang M, Li P, et al. HDAC2 deacetylates class II transactivator and suppresses its activity in macrophages and smooth muscle cells. J Mol Cell Cardiol. 2009;46:292–9.

    Article  CAS  PubMed  Google Scholar 

  91. Zhou J, Wang KC, Wu W, et al. MicroRNA-21 targets peroxisome proliferators-activated receptor-alpha in an autoregulatory loop to modulate flow-induced endothelial inflammation. Proc Natl Acad Sci U S A. 2011;108:10355–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Martin MM, Lee EJ, Buckenberger JA, Schmittgen TD, Elton TS. MicroRNA-155 regulates human angiotensin II type 1 receptor expression in fibroblasts. J Biol Chem. 2006;281:18277–84.

    Article  CAS  PubMed  Google Scholar 

  93. Schober A, Nazari-Jahantigh M, Wei Y, Bidzhekov K, et al. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med. 2014;20:368–76. This study addresses interesting aspects of fow-dependent regulation of endothelial cell homeostasis. In addition the authors identified miR-126-5p and its target Dlk1 as major regulators of endothelial repair.

    Article  CAS  PubMed  Google Scholar 

  94. Wu XY, Fan WD, Fang R, Wu GF. Regulation of microRNA-155 in endothelial inflammation by targeting nuclear factor (NF)-κB P65. J Cell Biochem. 2014;115:1928–36.

    CAS  PubMed  Google Scholar 

  95. Du F, Yu F, Wang Y, et al. MicroRNA-155 deficiency results in decreased macrophage inflammation and attenuated atherogenesis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2014;34:759–67.

    Article  CAS  PubMed  Google Scholar 

  96. Di Gregoli K, Jenkins N, Salter R, et al. MicroRNA-24 regulates macrophage behavior and retards atherosclerosis. Arterioscler Thromb Vasc Biol. 2014;34:1990–2000.

    Article  PubMed  Google Scholar 

  97. Fan X, Wang E, Wang X, et al. MicroRNA-21 is a unique signature associated with coronary plaque instability in humans by regulating matrix metalloproteinase-9 via reversion-inducing cysteine-rich protein with Kazal motifs. Exp Mol Pathol. 2014;96:242–9.

    Article  CAS  PubMed  Google Scholar 

  98. Napoli C. Developmental mechanisms involved in the primary prevention of atherosclerosis and cardiovascular disease. Curr Atheroscler Rep. 2011;13:170–5.

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Vincenzo Grimaldi, Maria Teresa Vietri, Concetta Schiano, Antonietta Picascia, Maria Rosaria De Pascale, Carmela Fiorito, Amelia Casamassimi, and Claudio Napoli declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Grimaldi.

Additional information

Vincenzo Grimaldi, Maria Teresa Vietri, and Concetta Schiano contributed equally to this article.

This article is part of the Topical Collection on Genetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grimaldi, V., Vietri, M.T., Schiano, C. et al. Epigenetic Reprogramming in Atherosclerosis. Curr Atheroscler Rep 17, 476 (2015). https://doi.org/10.1007/s11883-014-0476-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-014-0476-3

Keywords

Navigation