Skip to main content

Advertisement

Log in

Mineralocorticoid Receptors in Vascular Disease: Connecting Molecular Pathways to Clinical Implications

  • Clinical Trials and Their Interpretation (J Plutzky, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

The mineralocorticoid receptor (MR), a steroid-hormone-activated transcription factor, plays a substantial role in cardiovascular diseases. MR antagonists (MRAs) have long been appreciated as effective treatments for heart failure and hypertension; however, recent research suggests that additional patient populations may also benefit from MRA therapy. Experimental evidence demonstrates that in addition to its classic role in the regulating sodium handling in the kidney, functional MR is expressed in the blood vessels and contributes to hypertension, vascular inflammation and remodeling, and atherogenesis. MR activation drives pathological phenotypes in smooth muscle cells, endothelial cells, and inflammatory cells, whereas MRAs inhibit these effects. Collectively, these studies demonstrate a new role for extrarenal MR in cardiovascular disease. This review summarizes these new lines of evidence and how they contribute to the mechanisms of atherosclerosis, pulmonary and systemic hypertension, and vein graft failure, and describes new patient populations that may benefit from MRA therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rogerson FM, Fuller PJ. Mineralocorticoid action. Steroids. 2000;65(2):61–73.

    Article  PubMed  CAS  Google Scholar 

  2. Fagart J, Hillisch A, Huyet J, et al. A new mode of mineralocorticoid receptor antagonism by a potent and selective nonsteroidal molecule. J Biol Chem. 2010;285(39):29932–40.

    Article  PubMed  CAS  Google Scholar 

  3. Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348(14):1309–21.

    Article  PubMed  CAS  Google Scholar 

  4. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341(10):709–17.

    Article  PubMed  CAS  Google Scholar 

  5. Zannad F, McMurray JJ, Krum H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med. 2011;364(1):11–21.

    Article  PubMed  CAS  Google Scholar 

  6. Dahlof B, Devereux RB, Kjeldsen SE, et al. Cardiovascular morbidity and mortality in the Losartan Intervention for Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet. 2002;359(9311):995–1003.

    Article  PubMed  CAS  Google Scholar 

  7. Dagenais GR, Yusuf S, Bourassa MG, et al. Effects of ramipril on coronary events in high-risk persons: results of the Heart Outcomes Prevention Evaluation Study. Circulation. 2001;104(5):522–6.

    Article  PubMed  CAS  Google Scholar 

  8. White WB, Duprez D, St Hillaire R, et al. Effects of the selective aldosterone blocker eplerenone versus the calcium antagonist amlodipine in systolic hypertension. Hypertension. 2003;41(5):1021–6.

    Article  PubMed  CAS  Google Scholar 

  9. Hillaert MA, Lentjes EG, Kemperman H, et al. Aldosterone, atherosclerosis and vascular events in patients with stable coronary artery disease. Int J Cardiol. 2012. doi:10.1016/j.ijcard.2012.05.034.

    PubMed  Google Scholar 

  10. de Rita O, Hackam DG, Spence JD. Effects of aldosterone on human atherosclerosis: plasma aldosterone and progression of carotid plaque. Can J Cardiol. 2012;28(6):706–11.

    Article  PubMed  Google Scholar 

  11. Milliez P, Girerd X, Plouin PF, et al. Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J Am Coll Cardiol. 2005;45:1243–8.

    Article  PubMed  CAS  Google Scholar 

  12. •• Ivanes F, Susen S, Mouquet F, et al. Aldosterone, mortality, and acute ischaemic events in coronary artery disease patients outside the setting of acute myocardial infarction or heart failure. Eur Heart J. 2012;33(2):191–202. Prospective observational study demonstrating increased risk of cardiovascular ischemia and death in CAD patients with high serum aldo levels within the normal range.

    Article  PubMed  CAS  Google Scholar 

  13. Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357(21):2109–22.

    Article  PubMed  CAS  Google Scholar 

  14. Bots ML, Visseren FL, Evans GW, et al. Torcetrapib and carotid intima-media thickness in mixed dyslipidaemia (RADIANCE 2 study): a randomised, double-blind trial. Lancet. 2007;370(9582):153–60.

    Article  PubMed  CAS  Google Scholar 

  15. Nissen SE, Tardif JC, Nicholls SJ, et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N Engl J Med. 2007;356(13):1304–16.

    Article  PubMed  CAS  Google Scholar 

  16. Nicholls SJ, Tuzcu EM, Brennan DM, et al. Cholesteryl ester transfer protein inhibition, high-density lipoprotein raising, and progression of coronary atherosclerosis: insights from ILLUSTRATE (Investigation of Lipid Level Management Using Coronary Ultrasound to Assess Reduction of Atherosclerosis by CETP Inhibition and HDL Elevation). Circulation. 2008;118(24):2506–14.

    Article  PubMed  CAS  Google Scholar 

  17. Vergeer M, Bots ML, van Leuven SI, et al. Cholesteryl ester transfer protein inhibitor torcetrapib and off-target toxicity: a pooled analysis of the rating atherosclerotic disease change by imaging with a new CETP inhibitor (RADIANCE) trials. Circulation. 2008;118(24):2515–22.

    Article  PubMed  CAS  Google Scholar 

  18. Duriez P. CETP inhibition. Lancet. 2007;370(9603):1882–3.

    Article  PubMed  Google Scholar 

  19. Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol. 2011;12(3):204–12.

    Article  PubMed  CAS  Google Scholar 

  20. Janiczek RL, Blackman BR, Roy RJ, et al. Three-dimensional phase contrast angiography of the mouse aortic arch using spiral MRI. Magn Reson Med. 2011;66(5):1382–90.

    Article  PubMed  Google Scholar 

  21. Reneman RS, Arts T, Hoeks AP. Wall shear stress – an important determinant of endothelial cell function and structure – in the arterial system in vivo. Discrepancies with theory. J Vasc Res. 2006;43(3):251–69.

    Article  PubMed  Google Scholar 

  22. Ferrario CM, Strawn WB. Role of the renin-angiotensin-aldosterone system and proinflammatory mediators in cardiovascular disease. Am J Cardiol. 2006;98(1):121–8.

    Article  PubMed  CAS  Google Scholar 

  23. Keidar S, Kaplan M, Pavlotzky E, et al. Aldosterone administration to mice stimulates macrophage NADPH oxidase and increases atherosclerosis development: a possible role for angiotensin-converting enzyme and the receptors for angiotensin II and aldosterone. Circulation. 2004;109(18):2213–20.

    Article  PubMed  CAS  Google Scholar 

  24. McCurley A, Jaffe IZ. Mineralocorticoid receptors in vascular function and disease. Mol Cell Endocrinol. 2012;350(2):256–65.

    Article  PubMed  CAS  Google Scholar 

  25. Rajagopalan S, Duquaine D, King S, et al. Mineralocorticoid receptor antagonism in experimental atherosclerosis. Circulation. 2002;105(18):2212–6.

    Article  PubMed  CAS  Google Scholar 

  26. Keidar S, Hayek T, Kaplan M, et al. Effect of eplerenone, a selective aldosterone blocker, on blood pressure, serum and macrophage oxidative stress, and atherosclerosis in apolipoprotein E-deficient mice. J Cardiovasc Pharmacol. 2003;41(6):955–63.

    Article  PubMed  CAS  Google Scholar 

  27. Gamliel-Lazarovich A, Gantman A, Coleman R, et al. FAD286, an aldosterone synthase inhibitor, reduced atherosclerosis and inflammation in apolipoprotein E-deficient mice. J Hypertens. 2010;28(9):1900–7.

    Article  PubMed  CAS  Google Scholar 

  28. Raz-Pasteur A, Gamliel-Lazarovich A, Coleman R, Keidar S. Eplerenone reduced lesion size in early but not advanced atherosclerosis in apolipoprotein E-deficient mice. J Cardiovasc Pharmacol. 2012;60(6):508–12.

    Article  PubMed  CAS  Google Scholar 

  29. Deuchar GA, McLean D, Hadoke PW, et al. 11β-Hydroxysteroid dehydrogenase type 2 deficiency accelerates atherogenesis and causes proinflammatory changes in the endothelium in Apoe-/- mice. Endocrinology. 2011;152(1):236–46.

    Article  PubMed  CAS  Google Scholar 

  30. McGraw AP, Bagley J, Chen WS, et al. Aldosterone increases early atherosclerosis and promotes plaque inflammation through a placental growth factor-dependent mechanism. J Am Heart Assoc. 2013;2:e000018.

    Article  PubMed  Google Scholar 

  31. Jaffe IZ, Mendelsohn ME. Angiotensin II and aldosterone regulate gene transcription via functional mineralocortocoid receptors in human coronary artery smooth muscle cells. Circ Res. 2005;96(6):643–50.

    Article  PubMed  CAS  Google Scholar 

  32. Caprio M, Newfell BG, la Sala A, et al. Functional mineralocorticoid receptors in human vascular endothelial cells regulate intercellular adhesion molecule-1 expression and promote leukocyte adhesion. Circ Res. 2008;102(11):1359–67.

    Article  PubMed  CAS  Google Scholar 

  33. Dai G, Kaazempur-Mofrad MR, Natarajan S, et al. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc Natl Acad Sci USA. 2004;101(41):14871–6.

    Article  PubMed  CAS  Google Scholar 

  34. Newfell BG, Iyer LK, Mohammad NN, et al. Aldosterone regulates vascular gene transcription via oxidative stress-dependent and -independent pathways. Arterioscler Thromb Vasc Biol. 2011;31(8):1871–80.

    Article  PubMed  CAS  Google Scholar 

  35. Jaffe IZ, Tintut Y, Newfell BG, et al. Mineralocorticoid receptor activation promotes vascular cell calcification. Arterioscler Thromb Vasc Biol. 2007;27(4):799–805.

    Article  PubMed  CAS  Google Scholar 

  36. • Jaffe IZ, Newfell BG, Aronovitz M, et al. Placental growth factor mediates aldosterone-dependent vascular injury in mice. J Clin Invest. 2010;120(11):3891–900. This manuscript identifies novel mechanism for aldosterone-induced vascular remodeling. Also shows that in human vessels, aldosterone & MR regulate the VEGF pathway that might contribute to vessel restenosis.

    Article  PubMed  CAS  Google Scholar 

  37. Usher MG, Duan SZ, Ivaschenko CY, et al. Myeloid mineralocorticoid receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mice. J Clin Invest. 2010;120(9):3350–64.

    Article  PubMed  CAS  Google Scholar 

  38. Raz-Pasteur A, Gamliel-Lazarovich A, Gantman A, et al. Mineralocorticoid receptor blockade inhibits accelerated atherosclerosis induced by a low sodium diet in apolipoprotein E-deficient mice. J Renin Angiotensin Aldosterone Syst. 2012. doi:10.1177/1470320312467558.

    PubMed  Google Scholar 

  39. Frieler RA, Meng H, Duan SZ, et al. Myeloid-specific deletion of the mineralocorticoid receptor reduces infarct volume and alters inflammation during cerebral ischemia. Stroke. 2011;42(1):179–85.

    Article  PubMed  Google Scholar 

  40. Rickard AJ, Morgan JP, Tesch G, et al. Deletion of mineralocorticoid receptors from macrophages protects against deoxycorticosterone/salt-induced cardiac fibrosis and increased blood pressure. Hypertension. 2009;54(3):537–43.

    Article  PubMed  CAS  Google Scholar 

  41. Lichtman AH, Binder CJ, Tsimikas S, Witztum JL. Adaptive immunity in atherogenesis: new insights and therapeutic approaches. J Clin Invest. 2013;123(1):27–36.

    Article  PubMed  CAS  Google Scholar 

  42. Tomaschitz A, Pilz S, Grammer T, et al. Relationship between plasma aldosterone concentration and soluble cellular adhesion molecules in patients referred to coronary angiography. Exp Clin Endocrinol Diabetes. 2011;119(10):649–55.

    Article  PubMed  CAS  Google Scholar 

  43. Hillaert MA, Lentjes EG, Beygui F, et al. Measuring and targeting aldosterone and renin in atherosclerosis-a review of clinical data. Am Heart J. 2011;162(4):585–96.

    Article  PubMed  CAS  Google Scholar 

  44. Beygui F, Vicaut E, Ecollan P, et al. Rationale for an early aldosterone blockade in acute myocardial infarction and design of the ALBATROSS trial. Am Heart J. 2010;160(4):642–8.

    Article  PubMed  CAS  Google Scholar 

  45. National Hospital Discharge Survey. 2010. Number, rate, and standard error of all-listed surgical and nonsurgical procedures for discharges from short-stay hospitals by selected procedure categories: United States, 2010. http://www.cdc.gov/nchs/data/nhds/4procedures/2010pro4_numberrate.pdf.

  46. Sachs T, Pomposelli F, Hamdan A, et al. Trends in the national outcomes and costs for claudication and limb threatening ischemia: angioplasty vs bypass graft. J Vasc Surg. 2011;54(4):1021–31.

    Article  PubMed  Google Scholar 

  47. Zwolak RM, Adams MC, Clowes AW. Kinetics of vein graft hyperplasia: association with tangential stress. J Vasc Surg. 1987;5(1):126–36.

    PubMed  CAS  Google Scholar 

  48. Parang P, Arora R. Coronary vein graft disease: pathogenesis and prevention. Can J Cardiol. 2009;25(2):e57–62.

    Article  PubMed  Google Scholar 

  49. Westerband A, Mills JL, Marek JM, et al. Immunocytochemical determination of cell type and proliferation rate in human vein graft stenoses. J Vasc Surg. 1997;25(1):64–73.

    Article  PubMed  CAS  Google Scholar 

  50. Hosono M, Ueda M, Suehiro S, et al. Neointimal formation at the sites of anastomosis of the internal thoracic artery grafts after coronary artery bypass grafting in human subjects: an immunohistochemical analysis. J Thorac Cardiovasc Surg. 2000;120(2):319–28.

    Article  PubMed  CAS  Google Scholar 

  51. Shukla N, Jeremy JY. Pathophysiology of saphenous vein graft failure: a brief overview of interventions. Curr Opin Pharmacol. 2012;12(2):114–20.

    Article  PubMed  CAS  Google Scholar 

  52. Bafford R, Sui XX, Park M, et al. Mineralocorticoid receptor expression in human venous smooth muscle cells: a potential role for aldosterone signaling in vein graft arterialization. Am J Physiol Heart Circ Physiol. 2011;301(1):H41–7.

    Article  PubMed  CAS  Google Scholar 

  53. • Ehsan A, McGraw AP, Aronovitz MJ, et al. Mineralocorticoid receptor antagonism inhibits vein graft remodeling in mice. J Thorac Cardiovasc Surg. 2012. doi:10.1016/j.jtcvs.2012.08.007. First demonstration in a mouse model that MRA prevents vein graft remodeling.

    PubMed  Google Scholar 

  54. Bacchetta MD, Salemi A, Milla F, et al. Low-dose spironolactone: effects on artery-to-artery vein grafts and percutaneous coronary intervention sites. Am J Ther. 2009;16(3):204–14.

    Article  PubMed  Google Scholar 

  55. Fu C, Yu P, Tao M, et al. Monocyte chemoattractant protein-1/CCR2 axis promotes vein graft neointimal hyperplasia through its signaling in graft-extrinsic cell populations. Arterioscler Thromb Vasc Biol. 2012;32(10):2418–26.

    Article  PubMed  CAS  Google Scholar 

  56. Moreno K, Murray-Wijelath J, Yagi M, et al. Circulating inflammatory cells are associated with vein graft stenosis. J Vasc Surg. 2011;54(4):1124–30.

    Article  PubMed  Google Scholar 

  57. Gromotowicz A, Szemraj J, Stankiewicz A, et al. Study of the mechanisms of aldosterone prothrombotic effect in rats. J Renin Angiotensin Aldosterone Syst. 2011;12(4):430–9.

    Article  PubMed  CAS  Google Scholar 

  58. Batterink J, Stabler SN, Tejani AM, Fowkes CT. Spironolactone for hypertension. Cochrane Database Syst Rev. 2010;8, CD008169.

    PubMed  Google Scholar 

  59. Croom KF, Perry CM. Eplerenone: a review of its use in essential hypertension. Am J Cardiovasc Drugs. 2005;5(1):51–69.

    Article  PubMed  CAS  Google Scholar 

  60. Funder JW, Mihailidou AS. Aldosterone and mineralocorticoid receptors: clinical studies and basic biology. Mol Cell Endocrinol. 2009;301(1–2):2–6.

    Article  PubMed  CAS  Google Scholar 

  61. Pitt B, Reichek N, Willenbrock R, et al. Effects of eplerenone, enalapril, and eplereneone/enalapril in patients with essential hypertension and left ventricular hypertrophy: the 4E-left ventricular hypertrophy study. Circulation. 2003;108(15):1831–8.

    Article  PubMed  CAS  Google Scholar 

  62. Vaclavik J, Sedlak R, Plachy M, et al. Addition of spironolactone in patients with resistant arterial hypertension (ASPIRANT): a randomized, double-blind, placebo-controlled trial. Hypertension. 2011;57(6):1069–75.

    Article  PubMed  CAS  Google Scholar 

  63. Zhou X, Crook MF, Sharif-Rodriguez W, et al. Chronic antagonism of the mineralocorticoid receptor ameliorates hypertension and end organ damage in a rodent model of salt-sensitive hypertension. Clin Exp Hypertens. 2011;33(8):538–47.

    Article  PubMed  CAS  Google Scholar 

  64. Nagase M, Shibata S, Yoshida S, et al. Podocyte injury underlies the glomerulopathy of Dahl salt-hypertensive rats and is reversed by aldosterone blocker. Hypertension. 2006;47(6):1084–93.

    Article  PubMed  CAS  Google Scholar 

  65. Baldo MP, Forechi L, Morra EA, et al. Long-term use of low-dose spironolactone in spontaneously hypertensive rats: effects on left ventricular hypertrophy and stiffness. Pharmacol Rep. 2011;63(4):975–82.

    PubMed  CAS  Google Scholar 

  66. Sanz-Rosa D, Cediel E, de las Heras N, et al. Participation of aldosterone in the vascular inflammatory response of spontaneously hypertensive rats: role of the NFkappaB/IkappaB system. J Hypertens. 2005;23(6):1167–72.

    Article  PubMed  CAS  Google Scholar 

  67. Baumann M, Megens R, Bartholome R, et al. Prehypertensive renin-angiotensin-aldosterone system blockade in spontaneously hypertensive rats ameliorates the loss of long-term vascular function. Hypertens Res. 2007;30(9):853–61.

    Article  PubMed  CAS  Google Scholar 

  68. Lacolley P, Safar ME, Lucet B, et al. Prevention of aortic and cardiac fibrosis by spironolactone in old normotensive rats. J Am Coll Cardiol. 2001;37(2):662–7.

    Article  PubMed  CAS  Google Scholar 

  69. Nariai T, Fujita K, Mori M, et al. SM-368229, a novel promising mineralocorticoid receptor antagonist, shows antihypertensive efficacy with minimal effect on serum potassium level in rats. J Cardiovasc Pharmacol. 2012;59(5):458–64.

    Article  PubMed  CAS  Google Scholar 

  70. Nariai T, Fujita K, Mori M, et al. Antihypertensive and cardiorenal protective effects of SM-368229, a novel mineralocorticoid receptor antagonist, in aldosterone/salt-treated rats. Pharmacology. 2012;89(1–2):44–52.

    Article  PubMed  CAS  Google Scholar 

  71. Levy DG, Rocha R, Funder JW. Distinguishing the antihypertensive and electrolyte effects of eplerenone. J Clin Endocrinol Metab. 2004;89(6):2736–40.

    Article  PubMed  CAS  Google Scholar 

  72. Berger S, Bleich M, Schmid W, et al. Mineralocorticoid receptor knockout mice: pathophysiology of Na + metabolism. Proc Natl Acad Sci USA. 1998;95(16):9424–9.

    Article  PubMed  CAS  Google Scholar 

  73. Berger S, Bleich M, Schmid W, et al. Mineralocorticoid receptor knockout mice: lessons on Na + metabolism. Kidney Int. 2000;57(4):1295–8.

    Article  PubMed  CAS  Google Scholar 

  74. Ronzaud C, Loffing J, Bleich M, et al. Impairment of sodium balance in mice deficient in renal principal cell mineralocorticoid receptor. J Am Soc Nephrol. 2007;18(6):1679–87.

    Article  PubMed  CAS  Google Scholar 

  75. Ronzaud C, Loffing J, Gretz N, et al. Inducible renal principal cell-specific mineralocorticoid receptor gene inactivation in mice. Am J Physiol Renal Physiol. 2011;300(3):F756–60.

    Article  PubMed  CAS  Google Scholar 

  76. Mendelsohn ME. In hypertension, the kidney is not always the heart of the matter. J Clin Invest. 2005;115(4):840–4.

    PubMed  CAS  Google Scholar 

  77. Fujimura N, Noma K, Hata T, et al. Mineralocorticoid receptor blocker eplerenone improves endothelial function and inhibits Rho-associated kinase activity in patients with hypertension. Clin Pharmacol Ther. 2012;91(2):289–97.

    Article  PubMed  CAS  Google Scholar 

  78. • Maron BA, Zhang YY, White K, et al. Aldosterone inactivates the endothelin-B receptor via a cysteinyl thiol redox switch to decrease pulmonary endothelial nitric oxide levels and modulate pulmonary arterial hypertension. Circulation. 2012;126(8):963–74. First demonstration in a rodent model that MRA prevents pulmonary hypertension.

    Article  PubMed  CAS  Google Scholar 

  79. Quaschning T, Ruschitzka F, Shaw S, Luscher TF. Aldosterone receptor antagonism normalizes vascular function in liquorice-induced hypertension. Hypertension. 2001;37(2 Pt 2):801–5.

    Article  PubMed  CAS  Google Scholar 

  80. Rossi R, Nuzzo A, Iaccarino D, et al. Effects of antihypertensive treatment on endothelial function in postmenopausal hypertensive women. A significant role for aldosterone inhibition. J Renin Angiotensin Aldosterone Syst. 2011;12(4):446–55.

    Article  PubMed  CAS  Google Scholar 

  81. Takeda Y. Effects of eplerenone, a selective mineralocorticoid receptor antagonist, on clinical and experimental salt-sensitive hypertension. Hypertens Res. 2009;32(5):321–4.

    Article  PubMed  CAS  Google Scholar 

  82. Nguyen Dinh Cat A, Griol-Charhbili V, Loufrani L, et al. The endothelial mineralocorticoid receptor regulates vasoconstrictor tone and blood pressure. FASEB J. 2010;24(7):2454–63.

    Article  PubMed  Google Scholar 

  83. •• McCurley A, Pires PW, Bender SB, et al. Direct regulation of blood pressure by smooth muscle cell mineralocorticoid receptors. Nat Med. 2012;18(9):1429–33. Demonstrates a direct contribution of MR in smooth muscle cells to aging-associated hypertension. This manuscript alters the paradigm that MR regulates blood pressure exclusively by controlling renal sodium handling.

    Article  PubMed  CAS  Google Scholar 

  84. Mazak I, Fiebeler A, Muller DN, et al. Aldosterone potentiates angiotensin II-induced signaling in vascular smooth muscle cells. Circulation. 2004;109(22):2792–800.

    Article  PubMed  CAS  Google Scholar 

  85. Rautureau Y, Paradis P, Schiffrin EL. Cross-talk between aldosterone and angiotensin signaling in vascular smooth muscle cells. Steroids. 2011;76(9):834–9.

    PubMed  CAS  Google Scholar 

  86. Hatakeyama H, Miyamori I, Fujita T, et al. Vascular aldosterone. Biosynthesis and a link to angiotensin II-induced hypertrophy of vascular smooth muscle cells. J Biol Chem. 1994;269(39):24316–20.

    PubMed  CAS  Google Scholar 

  87. Xiao F, Puddefoot JR, Barker S, Vinson GP. Mechanism for aldosterone potentiation of angiotensin II-stimulated rat arterial smooth muscle cell proliferation. Hypertension. 2004;44(3):340–5.

    Article  PubMed  CAS  Google Scholar 

  88. Luther JM, Luo P, Wang Z, et al. Aldosterone deficiency and mineralocorticoid receptor antagonism prevent angiotensin II-induced cardiac, renal, and vascular injury. Kidney Int. 2012;82(6):643–51.

    Article  PubMed  CAS  Google Scholar 

  89. Flack JM, Oparil S, Pratt JH, et al. Efficacy and tolerability of eplerenone and losartan in hypertensive black and white patients. J Am Coll Cardiol. 2003;41(7):1148–55.

    Article  PubMed  CAS  Google Scholar 

  90. Nakamura T, Fukuda M, Kataoka K, et al. Eplerenone potentiates protective effects of amlodipine against cardiovascular injury in salt-sensitive hypertensive rats. Hypertens Res. 2011;34(7):817–24.

    Article  PubMed  CAS  Google Scholar 

  91. Benza RL, Miller DP, Barst RJ, et al. An evaluation of long-term survival from time of diagnosis in pulmonary arterial hypertension from the REVEAL Registry. Chest. 2012;142(2):448–56.

    Article  PubMed  Google Scholar 

  92. Yi ES, Kim H, Ahn H, et al. Distribution of obstructive intimal lesions and their cellular phenotypes in chronic pulmonary hypertension. A morphometric and immunohistochemical study. Am J Resp Crit Care Med. 2000;162(4 Pt 1):1577–86.

    Article  PubMed  CAS  Google Scholar 

  93. Schermuly RT, Dony E, Ghofrani HA, et al. Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest. 2005;115(10):2811–21.

    Article  PubMed  CAS  Google Scholar 

  94. Ross B, Giaid A. Role of endothelium in the development of pulmonary hypertension. In: Yuan JX-J, Garcia JGN, Hales CA, Rich S, Archer SL, West JB, editors. Textbook of pulmonary vascular disease. New York: Springer; 2011. p. 837–50.

    Chapter  Google Scholar 

  95. Preston IR, Sagliani KD, Warburton RR, et al. Mineralocorticoid receptor antagonism attenuates experimental pulmonary hypertension. Am J Phys Lung Cell Mol Phys. 2013. doi:10.1152/ajplung.00300.2012.

    Google Scholar 

  96. Maron BA, Opotowsky AR, Landzberg MJ, et al. Plasma aldosterone levels are elevated in patients with pulmonary arterial hypertension in the absence of left ventricular heart failure: a pilot study. Eur J Heart Fail. 2013;15(3):277–83.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

Adam P. McGraw declares no conflict of interest.

Amy McCurley declares no conflict of interest.

Ioana R. Preston declares no conflict of interest.

Iris Z. Jaffe declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iris Z. Jaffe.

Additional information

This article is part of the Topical Collection on Cardiovascular Disease and Stroke

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGraw, A.P., McCurley, A., Preston, I.R. et al. Mineralocorticoid Receptors in Vascular Disease: Connecting Molecular Pathways to Clinical Implications. Curr Atheroscler Rep 15, 340 (2013). https://doi.org/10.1007/s11883-013-0340-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-013-0340-x

Keywords

Navigation