Skip to main content

Advertisement

Log in

Temporal Regulation by Innate Type 2 Cytokines in Food Allergies

  • Allergies and the Environment (M Hernandez, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Food allergies (FAs) are a growing epidemic in western countries with poorly defined etiology. Defined as an adverse immune response to common food allergens, FAs present heterogeneously as a single- or multi-organ response that ranges in severity from localized hives and angioedema to systemic anaphylaxis.

Recent Findings

Current research focusing on epithelial-derived cytokines contends that temporal regulation by these factors impact initial sensitization and persistence of FA responses upon repeated food allergen exposure. Mechanistic understanding of FA draws insight from a myriad of atopic conditions studied in humans and modeled in mice.

Summary

In this review, we will highlight how epithelial-derived cytokines initiate and then potentiate FAs. We will also review existing evidence of the contribution of other atopic diseases to FA pathogenesis and whether FA symptoms overlap with other atopic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hammad H, Lambrecht BN. Barrier epithelial cells and the control of type 2 immunity. Immunity. 2015;43:29–40. Comprehensive review of barrier function and regulation of type 2 immune responses by alarmins.

    Article  CAS  PubMed  Google Scholar 

  2. Wynn TA. Type 2 cytokines: mechanisms and therapeutic strategies. Nat Rev Immunol. 2015;15:271–82.

    Article  CAS  PubMed  Google Scholar 

  3. Salimi M, Barlow JL, Saunders SP, Xue L, Gutowska-Owsiak D, Wang X, et al. A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med. 2013;210:2939–50. A formative study demonstrating the role of human skin-derived ILC2 in atopic dermatitis and the role of TSLP, IL-25, and IL-33 in regulation of ILC2 function.

  4. Nygaard U, Hvid M, Johansen C, Buchner M, Folster-Holst R, Deleuran M, et al. TSLP, IL-31, IL-33 and sST2 are new biomarkers in endophenotypic profiling of adult and childhood atopic dermatitis. J Eur Acad Dermatol Venereol. 2016

  5. Ziegler SF, Roan F, Bell BD, Stoklasek TA, Kitajima M, Han H. The biology of thymic stromal lymphopoietin (TSLP). Adv Pharmacol. 2013;66:129–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gao PS, Rafaels NM, Mu D, Hand T, Murray T, Boguniewicz M, et al. Genetic variants in thymic stromal lymphopoietin are associated with atopic dermatitis and eczema herpeticum. J Allergy Clin Immunol. 2010;125:1403–7 e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rothenberg ME, Spergel JM, Sherrill JD, Annaiah K, Martin LJ, Cianferoni A, et al. Common variants at 5q22 associate with pediatric eosinophilic esophagitis. Nat Genet. 2010;42:289–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Noti M, Wojno ED, Kim BS, Siracusa MC, Giacomin PR, Nair MG, et al. Thymic stromal lymphopoietin-elicited basophil responses promote eosinophilic esophagitis. Nat Med. 2013;19:1005–13. First demonstration of the involvement of TSLP and basophils in a mouse model of TSLP; the authors also identified risk variants in TSLP that contribute to EoE phenotype in patients.

  9. Ying S, O’Connor B, Ratoff J, Meng Q, Mallett K, Cousins D, et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J Immunol. 2005;174:8183–90.

    Article  CAS  PubMed  Google Scholar 

  10. Esaki H, Ewald DA, Ungar B, Rozenblit M, Zheng X, Xu H, et al. Identification of novel immune and barrier genes in atopic dermatitis by means of laser capture microdissection. J Allergy Clin Immunol. 2015;135:153–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Han H, Xu W, Headley MB, Jessup HK, Lee KS, Omori M, et al. Thymic stromal lymphopoietin (TSLP)-mediated dermal inflammation aggravates experimental asthma. Mucosal Immunol. 2012;5:342–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hardman C, Ogg G. Interleukin-33, friend and foe in type-2 immune responses. Curr Opin Immunol. 2016;42:16–24.

    Article  CAS  PubMed  Google Scholar 

  13. Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S, et al. A large-scale, consortium-based genome wide association study of asthma. N Engl J Med. 2010;363:1211–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shimizu M, Matsuda A, Yanagisawa K, Hirota T, Akahoshi M, Inomata N, et al. Functional SNPs in the distal promoter of the ST2 gene are associated with atopic dermatitis. Hum Mol Genet. 2005;14:2919–27.

    Article  CAS  PubMed  Google Scholar 

  15. Ho JE, Chen WY, Chen MH, Larson MG, McCabe EL, Cheng S, et al. Common genetic variation at the IL1RL1 locus regulates IL-33/ST2 signaling. J Clin Invest. 2013;123:4208–18. A study that revealed the functional relevance of non-coding variants in modulation of IL1RL1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wjst M, Sargurupremraj M, Arnold M. Genome-wide association studies in asthma: what they really told us about pathogenesis. Curr Opin Allergy Clin Immunol. 2013;13:112–8.

    Article  CAS  PubMed  Google Scholar 

  17. Judd LM, Heine RG, Menheniott TR, Buzzelli J, O’Brien-Simpson N, Pavlic D, et al. Elevated IL-33 expression is associated with pediatric eosinophilic esophagitis, and exogenous IL-33 promotes eosinophilic esophagitis development in mice. Am J Physiol Gastrointest Liver Physiol. 2016;310:G13–25. A recent study to show the role of IL-33 in EoE in both humans and mice.

    CAS  PubMed  Google Scholar 

  18. Wang YH, Angkasekwinai P, Lu N, Voo KS, Arima K, Hanabuchi S, et al. IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. J Exp Med. 2007;204:1837–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Price AE, Liang HE, Sullivan BM, Reinhardt RL, Eisley CJ, Erle DJ, et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc Natl Acad Sci U S A. 2010;107:11489–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. von Moltke J, Ji M, Liang HE, Locksley RM. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature. 2016;529:221–5. First functional role of specialized epithelial cells in modulation of ILC2 function and type 2 immune responses.

    Article  Google Scholar 

  21. Salter BM, Oliveria JP, Nusca G, Smith SG, Tworek D, Mitchell PD, et al. IL-25 and IL-33 induce type 2 inflammation in basophils from subjects with allergic asthma. Respir Res. 2016;17:5. First demonstration of how IL-25 and IL-33 impact basophil function in human allergic asthma.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Salter BM, Oliveria JP, Nusca G, Smith SG, Watson RM, Comeau M, et al. Thymic stromal lymphopoietin activation of basophils in patients with allergic asthma is IL-3 dependent. J Allergy Clin Immunol. 2015. A key study that reveals how TSLP regulates basophil function and cooperates with IL-3 and IgE-mediated signaling during basophil activation.

  23. Aalberse JA, van Thuijl AO, Meijer Y, de Jager W, van der Palen-Merkus T, Sprikkelman AB, et al. Plasma IL-25 is elevated in a subgroup of patients with clinical reactivity to peanut. Clin Transl Allergy. 2013;3:40. This study correlates IL-25 production in the plasma with FAs in peanut allergic patients.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shin HW, Kim DK, Park MH, Eun KM, Lee M, So D, et al. IL-25 as a novel therapeutic target in nasal polyps of patients with chronic rhinosinusitis. J Allergy Clin Immunol. 2015;135:1476–85 e7.

    Article  CAS  PubMed  Google Scholar 

  25. Jung JS, Park BL, Cheong HS, Bae JS, Kim JH, Chang HS, et al. Association of IL-17RB gene polymorphism with asthma. Chest. 2009;135:1173–80.

    Article  CAS  PubMed  Google Scholar 

  26. Siracusa MC, Kim BS, Spergel JM, Artis D. Basophils and allergic inflammation. J Allergy Clin Immunol. 2013;132:789-801; quiz 788. First discussion of how TSLP and IgE-mediated signaling shape allergic responses in human. The authors establish a dynamic paradigm to describe basophils in allergic inflammation

  27. Nowak-Wegrzyn A, Katz Y, Mehr SS, Koletzko S. Non-IgE-mediated gastrointestinal food allergy. J Allergy Clin Immunol. 2015;135:1114–24.

    Article  CAS  PubMed  Google Scholar 

  28. Oettgen HC. Fifty years later: emerging functions of IgE antibodies in host defense, immune regulation, and allergic diseases. J Allergy Clin Immunol. 2016;137:1631–45.

    Article  CAS  PubMed  Google Scholar 

  29. Lieberman P. Biphasic anaphylactic reactions. Ann Allergy Asthma Immunol.2005;95:217-26.

  30. Sharma HP, Bansil S, Uygungil B. Signs and symptoms of food allergy and food-induced anaphylaxis. Pediatr Clin North Am. 2015;62:1377–92.

    Article  PubMed  Google Scholar 

  31. Leonard SA, Nowak-Wegrzyn A. Food protein-induced enterocolitis syndrome. Pediatr Clin North Am. 2015;62:1463–77.

    Article  PubMed  Google Scholar 

  32. Cianferoni A, Spergel J. Eosinophilic esophagitis: a comprehensive review. Clin Rev Allergy Immunol. 2016;50:159–74.

    Article  CAS  PubMed  Google Scholar 

  33. Malhotra N, Levine J. Eosinophilic esophagitis: an autoimmune esophageal disorder. Curr Probl Pediatr Adolesc Health Care. 2014;44:335–40.

    Article  PubMed  Google Scholar 

  34. Chinthrajah RS, Hernandez JD, Boyd SD, Galli SJ, Nadeau KC. Molecular and cellular mechanisms of food allergy and food tolerance. J Allergy Clin Immunol. 2016;137:984–97. Comprehensive review on food allergies and food tolerance.

    Article  CAS  PubMed  Google Scholar 

  35. Schuijs MJ, Willart MA, Vergote K, Gras D, Deswarte K, Ege MJ, et al. Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells. Science. 2015;349:1106–10.

    Article  CAS  PubMed  Google Scholar 

  36. Han H, Thelen TD, Comeau MR, Ziegler SF. Thymic stromal lymphopoietin-mediated epicutaneous inflammation promotes acute diarrhea and anaphylaxis. J Clin Invest. 2014;124:5442–52. A seminal study that distinguishes the role of TSLP in sensitization and IL-25 in effector responses during allergen challenge.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Du Toit G, Roberts G, Sayre PH, Bahnson HT, Radulovic S, Santos AF, et al. Randomized trial of peanut consumption in infants at risk for peanut allergy. N Engl J Med. 2015;372:803–13. A pivotal clinical trial that demonstrates that early administration of peanut allergen tolerizes high-risk children against the development of peanut allergy.

  38. Ito T, Wang YH, Duramad O, Hori T, Delespesse GJ, Watanabe N, et al. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J Exp Med. 2005;202:1213–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Leyva-Castillo JM, Hener P, Michea P, Karasuyama H, Chan S, Soumelis V, et al. Skin thymic stromal lymphopoietin initiates Th2 responses through an orchestrated immune cascade. Nat Commun. 2013;4:2847.

    Article  PubMed  Google Scholar 

  40. Chen CY, Lee JB, Liu B, Ohta S, Wang PY, Kartashov AV, et al. Induction of interleukin-9-producing mucosal mast cells promotes susceptibility to IgE-mediated experimental food allergy. Immunity. 2015;43:788–802. A comprehensive mechanistic study in a food allergy mouse model demonstrates that the role of IL-9 in maintenance of mast cells.

  41. Lee JB, Chen CY, Liu B, Mugge L, Angkasekwinai P, Facchinetti V, et al. IL-25 and CD4(+) TH2 cells enhance type 2 innate lymphoid cell-derived IL-13 production, which promotes IgE-mediated experimental food allergy. J Allergy Clin Immunol. 2016;137:1216–25 e5. A recent study that emphasizes the role of IL-25 in maintenance of ILC2s during the effector phase in food allergy development.

    Article  CAS  PubMed  Google Scholar 

  42. Angkasekwinai P, Chang SH, Thapa M, Watarai H, Dong C. Regulation of IL-9 expression by IL-25 signaling. Nat Immunol. 2010;11:250–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Muto T, Fukuoka A, Kabashima K, Ziegler SF, Nakanishi K, Matsushita K, et al. The role of basophils and proallergic cytokines, TSLP and IL-33, in cutaneously sensitized food allergy. Int Immunol. 2014;26:539–49.

    Article  CAS  PubMed  Google Scholar 

  44. Noti M, Kim BS, Siracusa MC, Rak GD, Kubo M, Moghaddam AE, et al. Exposure to food allergens through inflamed skin promotes intestinal food allergy through the thymic stromal lymphopoietin-basophil axis. J Allergy Clin Immunol. 2014;133:1390-9, 9 e1-6. A supplementary study that supports the role of TSLP in food allergy.

  45. Howitt MR, Lavoie S, Michaud M, Blum AM, Tran SV, Weinstock JV, et al. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science. 2016;351:1329–33. An elegant study that examines the dynamic between gut parasites, IL-25, and type 2 immunity.

    Article  CAS  PubMed  Google Scholar 

  46. Chu DK, Llop-Guevara A, Walker TD, Flader K, Goncharova S, Boudreau JE, et al. IL-33, but not thymic stromal lymphopoietin or IL-25, is central to mite and peanut allergic sensitization. J Allergy Clin Immunol. 2013;131:187–200 e1-8. An up-to-date study that provides an alternate role of IL-33 in sensitization; this is in contrast to studies conducted by Han et al (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Galand C, Leyva-Castillo JM, Yoon J, Han A, Lee MS, McKenzie AN, et al. IL-33 promotes food anaphylaxis in epicutaneously sensitized mice by targeting mast cells. J Allergy Clin Immunol. 2016

  48. Tordesillas L, Goswami R, Benede S, Grishina G, Dunkin D, Jarvinen KM, et al. Skin exposure promotes a Th2-dependent sensitization to peanut allergens. J Clin Invest. 2014;124:4965–75. This study emphasizes both site of sensitization and type of adjuvant used in sensitization during food allergy pathogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee MW, Odegaard JI, Mukundan L, Qiu Y, Molofsky AB, Nussbaum JC, et al. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell. 2015;160:74–87. Seminal study that demonstrates the role of ILC2s in fat metabolism.

    Article  CAS  PubMed  Google Scholar 

  50. Brestoff JR, Kim BS, Saenz SA, Stine RR, Monticelli LA, Sonnenberg GF, et al. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature. 2015;519:242–6. A complimentary study to Lee et al. (2015) that demonstrates the role of the IL-33/ST2 signaling axis in fat metabolism.

    Article  CAS  PubMed  Google Scholar 

  51. Maazi H, Patel N, Sankaranarayanan I, Suzuki Y, Rigas D, Soroosh P, et al. ICOS:ICOS-ligand interaction is required for type 2 innate lymphoid cell function, homeostasis, and induction of airway hyperreactivity. Immunity. 2015;42:538–51. This study focuses on cell-cell interactions between ILC2s and T cells that maintain ILC2 survival and function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Oliphant CJ, Hwang YY, Walker JA, Salimi M, Wong SH, Brewer JM, et al. MHCII-mediated dialog between group 2 innate lymphoid cells and CD4(+) T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. Immunity. 2014;41:283–95. This study describes a novel mechanism by which MHCII regulates IL-2 juxtacrine maintenance of ILC2s by T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mathias CB, Hobson SA, Garcia-Lloret M, Lawson G, Poddighe D, Freyschmidt EJ, et al. IgE-mediated systemic anaphylaxis and impaired tolerance to food antigens in mice with enhanced IL-4 receptor signaling. J Allergy Clin Immunol. 2011;127:795–805 e1-6.

    Article  CAS  PubMed  Google Scholar 

  54. Noval Rivas M, Burton OT, Oettgen HC, Chatila T. IL-4 production by group 2 innate lymphoid cells promotes food allergy by blocking regulatory T-cell function. J Allergy Clin Immunol. 2016. A key study that establishes the role of ILC2s in the loss of tolerance during food allergy.

  55. Noval Rivas M, Burton OT, Wise P, Charbonnier LM, Georgiev P, Oettgen HC, et al. Regulatory T cell reprogramming toward a Th2-cell-like lineage impairs oral tolerance and promotes food allergy. Immunity. 2015;42:512–23. A novel mouse model that interrogates the role of regulatory T cells in food allergy.

    Article  CAS  PubMed  Google Scholar 

  56. Tsakok T, Marrs T, Mohsin M, Baron S, du Toit G, Till S, et al. Does atopic dermatitis cause food allergy? A systematic review. J Allergy Clin immunol. 2016;137:1071–8. A meta-analysis that examined the odd ratios for FA developed in patients with mild-to-severe atopic dermatitis.

    Article  PubMed  Google Scholar 

  57. Lack G, Fox D, Northstone K, Golding J, Avon Longitudinal Study of P, Children Study T. Factors associated with the development of peanut allergy in childhood. N Engl J Med. 2003;348:977–85.

    Article  PubMed  Google Scholar 

  58. Hondowicz BD, An D, Schenkel JM, Kim KS, Steach HR, Krishnamurty AT, et al. Interleukin-2-dependent allergen-specific tissue-resident memory cells drive asthma. Immunity. 2016;44:155–66.

    Article  CAS  PubMed  Google Scholar 

  59. Gaide O, Emerson RO, Jiang X, Gulati N, Nizza S, Desmarais C, et al. Common clonal origin of central and resident memory T cells following skin immunization. Nat Med. 2015;21:647–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Collins N, Jiang X, Zaid A, Macleod BL, Li J, Park CO, et al. Skin CD4(+) memory T cells exhibit combined cluster-mediated retention and equilibration with the circulation. Nat Commun. 2016;7:11514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Busse W, Corren J, Lanier BQ, McAlary M, Fowler-Taylor A, Cioppa GD, et al. Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma. J Allergy Clin Immunol. 2001;108:184–90.

    Article  CAS  PubMed  Google Scholar 

  62. Maurer M, Rosen K, Hsieh HJ, Saini S, Grattan C, Gimenez-Arnau A, et al. Omalizumab for the treatment of chronic idiopathic or spontaneous urticaria. N Engl J Med. 2013;368:924–35.

    Article  CAS  PubMed  Google Scholar 

  63. Leung DY, Sampson HA, Yunginger JW, Burks Jr AW, Schneider LC, Wortel CH, et al. Effect of anti-IgE therapy in patients with peanut allergy. N Engl J Med. 2003;348:986–93.

    Article  CAS  PubMed  Google Scholar 

  64. Wenzel S, Castro M, Corren J, Maspero J, Wang L, Zhang B, et al. Dupilumab efficacy and safety in adults with uncontrolled persistent asthma despite use of medium-to-high-dose inhaled corticosteroids plus a long-acting beta2 agonist: a randomised double-blind placebo-controlled pivotal phase 2b dose-ranging trial. Lancet. 2016;388:31–44.

    Article  CAS  PubMed  Google Scholar 

  65. Bel EH, Wenzel SE, Thompson PJ, Prazma CM, Keene ON, Yancey SW, et al. Oral glucocorticoid-sparing effect of mepolizumab in eosinophilic asthma. N Engl J Med. 2014;371:1189–97.

    Article  PubMed  Google Scholar 

  66. Gauvreau GM, O’Byrne PM, Boulet LP, Wang Y, Cockcroft D, Bigler J, et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N Engl J Med. 2014;370:2102–10. Phase II clinical trial for AMG 157 (first generation anti-TSLP therapeutic) in allergic asthmatics demonstrates efficacy in attenuating asthmatic responses.

  67. Agache I, Akdis CA. Endotypes of allergic diseases and asthma: an important step in building blocks for the future of precision medicine. Allergol Int. 2016;65:243–52. A report highlighting endotyping for allergic disease.

    Article  PubMed  Google Scholar 

  68. Wesemann DR, Nagler CR. The microbiome, timing, and barrier function in the context of allergic disease. Immunity. 2016;44:728–38.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kari C. Nadeau.

Ethics declarations

Conflict of Interest

Drs. Graham and Andorf report grants from NIH and from Sean N. Parker Center for Allergy and Asthma Research. Drs. Spergel, Chatila, and Nadeau declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Allergies and the Environment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graham, M.T., Andorf, S., Spergel, J.M. et al. Temporal Regulation by Innate Type 2 Cytokines in Food Allergies. Curr Allergy Asthma Rep 16, 75 (2016). https://doi.org/10.1007/s11882-016-0656-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-016-0656-z

Keywords

Navigation