Skip to main content
Log in

The Role of Bitter and Sweet Taste Receptors in Upper Airway Immunity

  • Rhinosinusitis (J Mullol, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Over the past several years, taste receptors have emerged as key players in the regulation of innate immune defenses in the mammalian respiratory tract. Several cell types in the airway, including ciliated epithelial cells, solitary chemosensory cells, and bronchial smooth muscle cells, all display chemoresponsive properties that utilize taste receptors. A variety of bitter products secreted by microbes are detected with resultant downstream inflammation, increased mucous clearance, antimicrobial peptide secretion, and direct bacterial killing. Genetic variation of bitter taste receptors also appears to play a role in the susceptibility to infection in respiratory disease states, including that of chronic rhinosinusitis. Ongoing taste receptor research may yield new therapeutics that harness innate immune defenses in the respiratory tract and may offer alternatives to antibiotic treatment. The present review discusses taste receptor-protective responses and analyzes the role these receptors play in mediating airway immune function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Laffitte A, Neiers F, Briand L. Functional roles of the sweet taste receptor in oral and extraoral tissues. Curr Opin Clin Nutr Metab Care. 2014;17(4):379–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Clark AA, Liggett SB, Munger SD. Extraoral bitter taste receptors as mediators of off-target drug effects. FASEB J. 2012;26(12):4827–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Depoortere I. Taste receptors of the gut: emerging roles in health and disease. Gut. 2014;63(1):179–90.

    Article  CAS  PubMed  Google Scholar 

  4. Behrens M, Meyerhof W. Oral and extraoral bitter taste receptors. Results Probl Cell Differ. 2010;52:87–99.

    Article  CAS  PubMed  Google Scholar 

  5. Kinnamon SC. Taste receptor signalling—from tongues to lungs. Acta Physiol (Oxf). 2012;204(2):158–68.

    Article  CAS  Google Scholar 

  6. Sternini C, Anselmi L, Rozengurt E. Enteroendocrine cells: a site of ‘taste’ in gastrointestinal chemosensing. Curr Opin Endocrinol Diabetes Obes. 2008;15(1):73–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Tizzano M et al. Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc Natl Acad Sci U S A. 2010;107(7):3210–5. Demonstrated that bitter taste receptors are used to detect bacterial products in the airway.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Lee RJ et al. T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. J Clin Invest. 2012;122(11):4145–59. Experiment to demonstrate the T2R38 stimulation causes downstream production of NO with subsequent increased MCC and bacterial killing.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Zhang Y et al. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell. 2003;112(3):293–301.

    Article  CAS  PubMed  Google Scholar 

  10. Iwata S, Yoshida R, Ninomiya Y. Taste transductions in taste receptor cells: basic tastes and moreover. Curr Pharm Des. 2014;20(16):2684–92.

    Article  CAS  PubMed  Google Scholar 

  11. Margolskee RF. Molecular mechanisms of bitter and sweet taste transduction. J Biol Chem. 2002;277(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  12. Treesukosol Y, Smith KR, Spector AC. The functional role of the T1R family of receptors in sweet taste and feeding. Physiol Behav. 2011;105(1):14–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Adler E et al. A novel family of mammalian taste receptors. Cell. 2000;100(6):693–702.

    Article  CAS  PubMed  Google Scholar 

  14. Brockhoff A et al. Broad tuning of the human bitter taste receptor hTAS2R46 to various sesquiterpene lactones, clerodane and labdane diterpenoids, strychnine, and denatonium. J Agric Food Chem. 2007;55(15):6236–43.

    Article  CAS  PubMed  Google Scholar 

  15. Chandrashekar J et al. T2Rs function as bitter taste receptors. Cell. 2000;100(6):703–11.

    Article  CAS  PubMed  Google Scholar 

  16. Wu SV, Chen MC, Rozengurt E. Genomic organization, expression, and function of bitter taste receptors (T2R) in mouse and rat. Physiol Genomics. 2005;22(2):139–49.

    Article  CAS  PubMed  Google Scholar 

  17. Liman ER, Zhang YV, Montell C. Peripheral coding of taste. Neuron. 2014;81(5):984–1000.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Roper SD. Taste buds as peripheral chemosensory processors. Semin Cell Dev Biol. 2013;24(1):71–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Meyerhof W et al. The molecular receptive ranges of human TAS2R bitter taste receptors. Chem Senses. 2010;35(2):157–70.

    Article  CAS  PubMed  Google Scholar 

  20. Giovannucci DR et al. Targeted phosphorylation of inositol 1,4,5-trisphosphate receptors selectively inhibits localized Ca2+ release and shapes oscillatory Ca2+ signals. J Biol Chem. 2000;275(43):33704–11.

    Article  CAS  PubMed  Google Scholar 

  21. Voigt A et al. Genetic labeling of Tas1r1 and Tas2r131 taste receptor cells in mice. Chem Senses. 2012;37(9):897–911.

    Article  CAS  PubMed  Google Scholar 

  22. Li F. Taste perception: from the tongue to the testis. Mol Hum Reprod. 2013;19(6):349–60.

    Article  CAS  PubMed  Google Scholar 

  23. Taruno A et al. How do taste cells lacking synapses mediate neurotransmission? CALHM1, a voltage-gated ATP channel. Bioessays. 2013;35(12):1111–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Zhang Z et al. The transduction channel TRPM5 is gated by intracellular calcium in taste cells. J Neurosci. 2007;27(21):5777–86.

    Article  CAS  PubMed  Google Scholar 

  25. Miyoshi MA, Abe K, Emori Y. IP(3) receptor type 3 and PLCbeta2 are co-expressed with taste receptors T1R and T2R in rat taste bud cells. Chem Senses. 2001;26(3):259–65.

    Article  CAS  PubMed  Google Scholar 

  26. Taruno A et al. CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature. 2013;495(7440):223–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Behrens M et al. Immunohistochemical detection of TAS2R38 protein in human taste cells. PLoS One. 2012;7(7), e40304.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Hilding AC. The role of the respiratory mucosa in health and disease. Minn Med. 1967;50(6):915–9.

    CAS  PubMed  Google Scholar 

  29. Shaari J et al. Regional analysis of sinonasal ciliary beat frequency. Am J Rhinol. 2006;20(2):150–4.

    PubMed  Google Scholar 

  30. Sleigh MA, Blake JR, Liron N. The propulsion of mucus by cilia. Am Rev Respir Dis. 1988;137(3):726–41.

    Article  CAS  PubMed  Google Scholar 

  31. Parker D, Prince A. Innate immunity in the respiratory epithelium. Am J Respir Cell Mol Biol. 2011;45(2):189–201.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Knowles MR, Boucher RC. Mucus clearance as a primary innate defense mechanism for mammalian airways. J Clin Invest. 2002;109(5):571–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Ooi EH, Wormald PJ, Tan LW. Innate immunity in the paranasal sinuses: a review of nasal host defenses. Am J Rhinol. 2008;22(1):13–9.

    Article  PubMed  Google Scholar 

  34. Hume DA et al. Macrophages exposed continuously to lipopolysaccharide and other agonists that act via toll-like receptors exhibit a sustained and additive activation state. BMC Immunol. 2001;2:11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Barham HP et al. Solitary chemosensory cells and bitter taste receptor signaling in human sinonasal mucosa. Int Forum Allergy Rhinol. 2013;3(6):450–7.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Tizzano M et al. Expression of taste receptors in solitary chemosensory cells of rodent airways. BMC Pulm Med. 2011;11:3. Analyzed the expression pattern of taste receptors in the rodent airway.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Lee RJ et al. Bitter and sweet taste receptors regulate human upper respiratory innate immunity. J Clin Invest. 2014;124(3):1393–405.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Shah AS et al. Motile cilia of human airway epithelia are chemosensory. Science. 2009;325(5944):1131–4. Seminal study demonstrating that cilia can detect chemicals in the sinonasal tract.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Saunders CJ et al. Cholinergic neurotransmission links solitary chemosensory cells to nasal inflammation. Proc Natl Acad Sci U S A. 2014;111(16):6075–80. Experiment to show that the SCC in the mouse transduces bitter taste signals into inflammatory responses.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Gulbransen B, Silver W, Finger TE. Solitary chemoreceptor cell survival is independent of intact trigeminal innervation. J Comp Neurol. 2008;508(1):62–71.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Barraud N et al. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol. 2006;188(21):7344–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Salathe M. Regulation of mammalian ciliary beating. Annu Rev Physiol. 2007;69:401–22.

    Article  CAS  PubMed  Google Scholar 

  43. Chadwick M et al. Sesquiterpenoids lactones: benefits to plants and people. Int J Mol Sci. 2013;14(6):12780–805.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Jimenez PN et al. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev. 2012;76(1):46–65.

    Article  CAS  PubMed  Google Scholar 

  45. Li Z, Nair SK. Quorum sensing: how bacteria can coordinate activity and synchronize their response to external signals? Protein Sci. 2012;21(10):1403–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Parsek MR, Greenberg EP. Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc Natl Acad Sci U S A. 2000;97(16):8789–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Zancanaro C et al. Alpha-gustducin expression in the vomeronasal organ of the mouse. Eur J Neurosci. 1999;11(12):4473–5.

    Article  CAS  PubMed  Google Scholar 

  48. Osculati F et al. The solitary chemosensory cells and the diffuse chemosensory system of the airway. Eur J Histochem. 2007;51 Suppl 1:65–72.

    PubMed  Google Scholar 

  49. Lin W et al. TRPM5-expressing microvillous cells in the main olfactory epithelium. BMC Neurosci. 2008;9:114.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Mendonca JC, Dolci JE. Neuropeptide immunofluorescence in human nasal mucosa: assessment of the technique for vasoactive intestinal peptide (VIP). Braz J Otorhinolaryngol. 2005;71(2):123–31.

    Article  PubMed  Google Scholar 

  51. Mosimann BL et al. Substance P, calcitonin gene-related peptide, and vasoactive intestinal peptide increase in nasal secretions after allergen challenge in atopic patients. J Allergy Clin Immunol. 1993;92(1 Pt 1):95–104.

    Article  CAS  PubMed  Google Scholar 

  52. Lee RJ et al. Vasoactive intestinal peptide regulates sinonasal mucociliary clearance and synergizes with histamine in stimulating sinonasal fluid secretion. FASEB J. 2013;27(12):5094–103. Experiment to show that the SCC in humans transduces bitter and sweet taste signals and show antimicrobial peptide secretory responses.

    Article  CAS  PubMed  Google Scholar 

  53. Braun T, Mack B, Kramer MF. Solitary chemosensory cells in the respiratory and vomeronasal epithelium of the human nose: a pilot study. Rhinology. 2011;49(5):507–12. Identification of SCCs in the human sinonasal mucosa.

    PubMed  Google Scholar 

  54. Finger TE et al. Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc Natl Acad Sci U S A. 2003;100(15):8981–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Krasteva G et al. Cholinergic chemosensory cells in the trachea regulate breathing. Proc Natl Acad Sci U S A. 2011;108(23):9478–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Saunders CJ, Reynolds SD, Finger TE. Chemosensory brush cells of the trachea. A stable population in a dynamic epithelium. Am J Respir Cell Mol Biol. 2013;49(2):190–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. An SS et al. TAS2R activation promotes airway smooth muscle relaxation despite beta(2)-adrenergic receptor tachyphylaxis. Am J Physiol Lung Cell Mol Physiol. 2012;303(4):L304–11. Bitter taste receptor stimulation causes downstream bronchodilation.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Deshpande DA et al. Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat Med. 2010;16(11):1299–304.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Robinett KS et al. Bitter taste receptor function in asthmatic and nonasthmatic human airway smooth muscle cells. Am J Respir Cell Mol Biol. 2014;50(4):678–83.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Hayes JE et al. Allelic variation in TAS2R bitter receptor genes associates with variation in sensations from and ingestive behaviors toward common bitter beverages in adults. Chem Senses. 2011;36(3):311–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Bufe B et al. The molecular basis of individual differences in phenylthiocarbamide and propylthiouracil bitterness perception. Curr Biol. 2005;15(4):322–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Kim UK, Drayna D. Genetics of individual differences in bitter taste perception: lessons from the PTC gene. Clin Genet. 2005;67(4):275–80.

    Article  CAS  PubMed  Google Scholar 

  63. Adappa ND et al. The bitter taste receptor T2R38 is an independent risk factor for chronic rhinosinusitis requiring sinus surgery. Int Forum Allergy Rhinol. 2014;4(1):3–7. Prospective study demonstrating the increased need for FESS among AVI/AVI TAS2R38 genotype in CRS patients.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Antunes MB, Gudis DA, Cohen NA. Epithelium, cilia, and mucus: their importance in chronic rhinosinusitis. Immunol Allergy Clin N Am. 2009;29(4):631–43.

    Article  Google Scholar 

  65. Feldman C et al. The effects of pneumolysin and hydrogen peroxide, alone and in combination, on human ciliated epithelium in vitro. Respir Med. 2002;96(8):580–5.

    Article  CAS  PubMed  Google Scholar 

  66. Min YG et al. Effects of staphylococcal enterotoxin on ciliary activity and histology of the sinus mucosa. Acta Otolaryngol. 2006;126(9):941–7.

    Article  CAS  PubMed  Google Scholar 

  67. Chen B et al. Altered sinonasal ciliary dynamics in chronic rhinosinusitis. Am J Rhinol. 2006;20(3):325–9.

    Article  PubMed  Google Scholar 

  68. Davis SS, Illum L. Absorption enhancers for nasal drug delivery. Clin Pharmacokinet. 2003;42(13):1107–28.

    Article  CAS  PubMed  Google Scholar 

  69. Naraghi M et al. Nitric oxide: a new concept in chronic sinusitis pathogenesis. Am J Otolaryngol. 2007;28(5):334–7.

    Article  CAS  PubMed  Google Scholar 

  70. Phillips PS et al. Nasal nitric oxide and sinonasal disease: a systematic review of published evidence. Otolaryngol Head Neck Surg. 2011;144(2):159–69.

    Article  PubMed  Google Scholar 

  71. Adappa ND et al. Genetics of the taste receptor T2R38 correlates with chronic rhinosinusitis necessitating surgical intervention. Int Forum Allergy Rhinol. 2013;3(3):184–7. T2R38 genotype determines necessity for surgical intervention in CRS.

    Article  PubMed  Google Scholar 

  72. Mfuna Endam L et al. Genetic variations in taste receptors are associated with chronic rhinosinusitis: a replication study. Int Forum Allergy Rhinol. 2014;4(3):200–6. Confirmation that T2R38 genotype is associated with CRS.

    Article  PubMed  Google Scholar 

  73. Lee RJ, Cohen NA. The emerging role of the bitter taste receptor T2R38 in upper respiratory infection and chronic rhinosinusitis. Am J Rhinol Allergy. 2013;27(4):283–6.

    Article  PubMed  Google Scholar 

  74. Kalsi KK et al. Glucose homeostasis across human airway epithelial cell monolayers: role of diffusion, transport and metabolism. Pflugers Arch. 2009;457(5):1061–70.

    Article  CAS  PubMed  Google Scholar 

  75. Lemon CH, Margolskee RF. Contribution of the T1r3 taste receptor to the response properties of central gustatory neurons. J Neurophysiol. 2009;101(5):2459–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Jiang P et al. Lactisole interacts with the transmembrane domains of human T1R3 to inhibit sweet taste. J Biol Chem. 2005;280(15):15238–46.

    Article  CAS  PubMed  Google Scholar 

  77. Imada T et al. Amiloride reduces the sweet taste intensity by inhibiting the human sweet taste receptor. Biochem Biophys Res Commun. 2010;397(2):220–5.

    Article  CAS  PubMed  Google Scholar 

  78. Bachmanov AA et al. Genetics of taste receptors. Curr Pharm Des. 2014;20(16):2669–83.

    Article  CAS  PubMed  Google Scholar 

  79. Fushan AA et al. Allelic polymorphism within the TAS1R3 promoter is associated with human taste sensitivity to sucrose. Curr Biol. 2009;19(15):1288–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Mennella JA, Pepino MY, Reed DR. Genetic and environmental determinants of bitter perception and sweet preferences. Pediatrics. 2005;115(2):e216–22.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Pezzulo AA et al. Glucose depletion in the airway surface liquid is essential for sterility of the airways. PLoS One. 2011;6(1), e16166.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Zhang Z et al. The effect of diabetes mellitus on chronic rhinosinusitis and sinus surgery outcome. Int Forum Allergy Rhinol. 2014;4(4):315–20.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Orsmark-Pietras C et al. Transcriptome analysis reveals upregulation of bitter taste receptors in severe asthmatics. Eur Respir J. 2013;42(1):65–78. Asthmatics have an upregulation of bitter taste receptor expression.

    Article  CAS  PubMed  Google Scholar 

  84. Schroeder BO et al. Reduction of disulphide bonds unmasks potent antimicrobial activity of human beta-defensin 1. Nature. 2011;469(7330):419–23.

    Article  CAS  PubMed  Google Scholar 

  85. Wilson SS, Wiens ME, Smith JG. Antiviral mechanisms of human defensins. J Mol Biol. 2013;425(24):4965–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noam A. Cohen.

Ethics declarations

Conflict of Interest

Dr. Cohen has a patent “Therapy and Diagnostics for Respiratory Infection” 61/697,652 (filed 12/6/12) WO2013112865 pending. Drs. Workman, Palmer, and Adappa declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Rhinosinusitis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Workman, A.D., Palmer, J.N., Adappa, N.D. et al. The Role of Bitter and Sweet Taste Receptors in Upper Airway Immunity. Curr Allergy Asthma Rep 15, 72 (2015). https://doi.org/10.1007/s11882-015-0571-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-015-0571-8

Keywords

Navigation