Skip to main content

Advertisement

Log in

Rationale and Clinical Results of Inhibiting Interleukin-5 for the Treatment of Severe Asthma

  • ASTHMA (WJ CALHOUN AND SP PETERS, SECTION EDITORS)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Severe asthma is responsible for considerable morbidity and a high proportion of the healthcare costs attributable to asthma. Management is not straightforward as the clinical, pathological and physiological features are heterogeneous and the relationships between these features are poorly understood. In recent years significant progress has been made in understanding this heterogeneity and eosinophilic asthma has emerged as a potentially clinically important phenotype because treatment with monoclonal antibodies against IL-5 is effective. This has required a change in our understanding of the role of eosinophilic airway inflammation in airways disease and the developments of reliable biomarkers of eosinophilic airway inflammation. We will review these developments and describe the clinical experience so far with treatment with monoclonal antibiotics against IL-5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AHR:

Airway hyperresponsiveness

BAL:

Bronchoalveolar lavage

ECP:

Eosinophil cationic protein

EDN:

Eosinophil-derived neurotoxin

EPO:

Eosinophil peroxidise

FeNO:

Exhaled nitric oxide concentration

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

IgE:

Immunoglobulin E

IL-5:

Interleukin-5

MBP:

Major basic protein

RCT:

Randomised controlled trial

RNA:

Ribonucleic acid

ROS:

Reactive oxygen species

Th2:

Type 2 T helper

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. British Thoracic Society Scottish Intercollegiate Guidelines Network. British guideline on the management of asthma. Thorax. 2008;4:iv1–121.

    Article  Google Scholar 

  2. GINA Report: Global Strategy for Asthma Management and Prevention. http://www.ginasthma.org (2012).

  3. Holgate ST, Polosa R. The mechanisms, diagnosis, and management of severe asthma in adults. Lancet. 2006;368:780–93.

    Article  PubMed  CAS  Google Scholar 

  4. Bateman ED, Hurd SS, Barnes PJ, Bousquet J, Drazen JM, FitzGerald M, et al. Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J. 2008;31:143–78.

    Article  PubMed  CAS  Google Scholar 

  5. Bousquet J, Mantzouranis E, Cruz AA, Ait-Khaled N, Baena-Cagnani CE, Bleecker ER, et al. Uniform definition of asthma severity, control, and exacerbations: document presented for the World Health Organization Consultation on Severe Asthma. J Allergy Clin Immunol. 2010;126:926–38.

    Article  PubMed  Google Scholar 

  6. Jackson DJ, Sykes A, Mallia P, Johnston SL. Asthma exacerbations: origin, effect, and prevention. J Allergy Clin Immunol. 2011;128:1165–74.

    Article  PubMed  Google Scholar 

  7. Barnes PJ. Inhaled glucocorticoids for asthma. N Engl J Med. 1995;332:868–75.

    Article  PubMed  CAS  Google Scholar 

  8. Barnes PJ. Glucocorticoids and asthma. Ernst Schering Res Found Workshop. 2002;40:1–23.

    PubMed  CAS  Google Scholar 

  9. Wenzel S. Severe asthma in adults. Am J Respir Crit Care Med. 2005;172:149–60.

    Article  PubMed  Google Scholar 

  10. Strunk RC, Bloomberg GR. Omalizumab for asthma. N Engl J Med. 2006;354:2689–95.

    Article  PubMed  CAS  Google Scholar 

  11. Bush A, Pavord ID. Omalizumab: NICE to USE you, to LOSE you NICE. Thorax. 2013;68:7–8.

    Article  PubMed  Google Scholar 

  12. Wenzel SE. Eosinophils in asthma—closing the loop or opening the door? N Engl J Med. 2009;360:1026–8.

    Article  PubMed  CAS  Google Scholar 

  13. Ehrlich P. Beiträge zur Kenntniss der granulirten Bindegewebszellen und der eosinophilen Leukocythen. Archiv fuer Anatomie und Physiologie: Physiologische Abteilung 1879: 166-169.

  14. Weller PF. Human eosinophils. J Allergy Clin Immunol. 1997;100:283–7.

    Article  PubMed  CAS  Google Scholar 

  15. Rosenberg HF, Phipps S, Foster PS. Eosinophil trafficking in allergy and asthma. J Allergy Clin Immunol. 2007;119:1303–10. quiz 1311-2.

    Article  PubMed  CAS  Google Scholar 

  16. Walsh ER, Stokes K, August A. The role of eosinophils in allergic airway inflammation. Discov Med. 2010;9:357–62.

    PubMed  Google Scholar 

  17. Bousquet J, Chanez P, Lacoste JY, Barneon G, Ghavanian N, Enander I, et al. Eosinophilic inflammation in asthma. N Engl J Med. 1990;323:1033–9.

    Article  PubMed  CAS  Google Scholar 

  18. Motojima S, Frigas E, Loegering DA, Gleich GJ. Toxicity of eosinophil cationic proteins for guinea pig tracheal epithelium in vitro. Am Rev Respir Dis. 1989;139:801–5.

    Article  PubMed  CAS  Google Scholar 

  19. Oddera S, Silvestri M, Balbo A, Jovovich BO, Penna R, Crimi E, et al. Airway eosinophilic inflammation, epithelial damage, and bronchial hyperresponsiveness in patients with mild-moderate, stable asthma. Allergy. 1996;51:100–7.

    PubMed  CAS  Google Scholar 

  20. Hernnas J, Sarnstrand B, Lindroth P, Peterson CG, Venge P, Malmstrom A. Eosinophil cationic protein alters proteoglycan metabolism in human lung fibroblast cultures. Eur J Cell Biol. 1992;59:352–63.

    PubMed  CAS  Google Scholar 

  21. Humbles AA, Lloyd CM, McMillan SJ, Friend DS, Xanthou G, McKenna EE, et al. A critical role for eosinophils in allergic airways remodeling. Science. 2004;305:1776–9.

    Article  PubMed  CAS  Google Scholar 

  22. Wenzel SE, Schwartz LB, Langmack EL, Halliday JL, Trudeau JB, Gibbs RL, et al. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med. 1999;160:1001–8.

    Article  PubMed  CAS  Google Scholar 

  23. Flood-Page P, Menzies-Gow A, Phipps S, Ying S, Wangoo A, Ludwig MS, et al. Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J Clin Invest. 2003;112:1029–36.

    PubMed  CAS  Google Scholar 

  24. Coyle AJ, Ackerman SJ, Burch R, Proud D, Irvin CG. Human eosinophil-granule major basic protein and synthetic polycations induce airway hyperresponsiveness in vivo dependent on bradykinin generation. J Clin Invest. 1995;95:1735–40.

    Article  PubMed  CAS  Google Scholar 

  25. Lee JJ, Dimina D, Macias MP, Ochkur SI, McGarry MP, O'Neill KR, et al. Defining a link with asthma in mice congenitally deficient in eosinophils. Science. 2004;305:1773–6.

    Article  PubMed  CAS  Google Scholar 

  26. Wardlaw AJ, Dunnette S, Gleich GJ, Collins JV, Kay AB. Eosinophils and mast cells in bronchoalveolar lavage in subjects with mild asthma. Relationship to bronchial hyperreactivity. Am Rev Respir Dis. 1988;137:62–9.

    Article  PubMed  CAS  Google Scholar 

  27. Wardlaw AJ, Brightling C, Green R, Woltmann G, Pavord I. Eosinophils in asthma and other allergic diseases. Br Med Bull. 2000;56:985–1003.

    Article  PubMed  CAS  Google Scholar 

  28. Deykin A, Lazarus SC, Fahy JV, Wechsler ME, Boushey HA, Chinchilli VM, et al. Asthma Clinical Research Network, National Heart, Lung, and Blood Institute/NIH. Sputum eosinophil counts predict asthma control after discontinuation of inhaled corticosteroids. J Allergy Clin Immunol. 2005;115:720–7.

    Article  PubMed  CAS  Google Scholar 

  29. Leuppi JD, Salome CM, Jenkins CR, Anderson SD, Xuan W, Marks GB, et al. Predictive markers of asthma exacerbation during stepwise dose reduction of inhaled corticosteroids. Am J Respir Crit Care Med. 2001;163:406–12.

    Article  PubMed  CAS  Google Scholar 

  30. Green RH, Brightling CE, McKenna S, Hargadon B, Parker D, Bradding P, et al. Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial. Lancet. 2002;360:1715–21.

    Article  PubMed  Google Scholar 

  31. Chlumsky J, Striz I, Terl M, Vondracek J. Strategy aimed at reduction of sputum eosinophils decreases exacerbation rate in patients with asthma. J Int Med Res. 2006;34:129–39.

    Article  PubMed  CAS  Google Scholar 

  32. Takatsu K. Interleukin-5 and IL-5 receptor in health and diseases. Proc Jpn Acad Ser B Phys Biol Sci. 2011;87:463–85.

    Article  PubMed  CAS  Google Scholar 

  33. Sanderson CJ, O'Garra A, Warren DJ, Klaus GG. Eosinophil differentiation factor also has B-cell growth factor activity: proposed name interleukin 4. Proc Natl Acad Sci U S A. 1986;83:437–40.

    Article  PubMed  CAS  Google Scholar 

  34. van Leeuwen BH, Martinson ME, Webb GC, Young IG. Molecular organization of the cytokine gene cluster, involving the human IL-3, IL-4, IL-5, and GM-CSF genes, on human chromosome 5. Blood. 1989;73:1142–8.

    PubMed  Google Scholar 

  35. Miyajima A, Mui AL, Ogorochi T, Sakamaki K. Receptors for granulocyte-macrophage colony-stimulating factor, interleukin-3, and interleukin-5. Blood. 1993;82:1960–74.

    PubMed  CAS  Google Scholar 

  36. Dent LA, Strath M, Mellor AL, Sanderson CJ. Eosinophilia in transgenic mice expressing interleukin 5. J Exp Med. 1990;172:1425–31.

    Article  PubMed  CAS  Google Scholar 

  37. Fujisawa T, Abu-Ghazaleh R, Kita H, Sanderson CJ, Gleich GJ. Regulatory effect of cytokines on eosinophil degranulation. J Immunol. 1990;144:642–6.

    PubMed  CAS  Google Scholar 

  38. Walsh GM, Hartnell A, Wardlaw AJ, Kurihara K, Sanderson CJ, Kay AB. IL-5 enhances the in vitro adhesion of human eosinophils, but not neutrophils, in a leucocyte integrin (CD11/18)-dependent manner. Immunology. 1990;71:258–65.

    PubMed  CAS  Google Scholar 

  39. van Rensen EL, Stirling RG, Scheerens J, Staples K, Sterk PJ, Barnes PJ, et al. Evidence for systemic rather than pulmonary effects of interleukin-5 administration in asthma. Thorax. 2001;56:935–40.

    Article  PubMed  Google Scholar 

  40. Shi H, Qin S, Huang G, Chen Y, Xiao C, Xu H, et al. Infiltration of eosinophils into the asthmatic airways caused by interleukin 5. Am J Respir Cell Mol Biol. 1997;16:220–4.

    Article  PubMed  CAS  Google Scholar 

  41. Rothenberg ME, Petersen J, Stevens RL, Silberstein DS, McKenzie DT, Austen KF, et al. IL-5-dependent conversion of normodense human eosinophils to the hypodense phenotype uses 3T3 fibroblasts for enhanced viability, accelerated hypodensity, and sustained antibody-dependent cytotoxicity. J Immunol. 1989;143:2311–6.

    PubMed  CAS  Google Scholar 

  42. Foster PS, Hogan SP, Ramsay AJ, Matthaei KI, Young IG. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med. 1996;183:195–201.

    Article  PubMed  CAS  Google Scholar 

  43. Tanaka H, Komai M, Nagao K, Ishizaki M, Kajiwara D, Takatsu K, et al. Role of interleukin-5 and eosinophils in allergen-induced airway remodeling in mice. Am J Respir Cell Mol Biol. 2004;31:62–8.

    Article  PubMed  CAS  Google Scholar 

  44. Leckie MJ, ten Brinke A, Khan J, Diamant Z, O'Connor BJ, Walls CM, et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet. 2000;356:2144–8.

    Article  PubMed  CAS  Google Scholar 

  45. Flood-Page PT, Menzies-Gow AN, Kay AB, Robinson DS. Eosinophil's role remains uncertain as anti-interleukin-5 only partially depletes numbers in asthmatic airway. Am J Respir Crit Care Med. 2003;167:199–204.

    Article  PubMed  Google Scholar 

  46. Flood-Page P, Swenson C, Faiferman I, Matthews J, Williams M, Brannick L, et al. International Mepolizumab Study Group. A study to evaluate safety and efficacy of mepolizumab in patients with moderate persistent asthma. Am J Respir Crit Care Med. 2007;176:1062–71.

    Article  PubMed  CAS  Google Scholar 

  47. Reddel H, Ware S, Marks G, Salome C, Jenkins C, Woolcock A. Differences between asthma exacerbations and poor asthma control. Lancet. 1999;353:364–9.

    Article  PubMed  CAS  Google Scholar 

  48. Pauwels RA, Löfdahl C, Postma DS, Tattersfield AE, O'Byrne P, Barnes PJ, et al. Effect of Inhaled Formoterol and Budesonide on Exacerbations of Asthma. N Engl J Med. 1997;337:1405–11.

    Article  PubMed  CAS  Google Scholar 

  49. Jayaram L, Pizzichini MM, Cook RJ, Boulet LP, Lemiere C, Pizzichini E, et al. Determining asthma treatment by monitoring sputum cell counts: effect on exacerbations. Eur Respir J. 2006;27:483–94.

    Article  PubMed  CAS  Google Scholar 

  50. Green RH, Brightling CE, McKenna S, Hargadon B, Neale N, Parker D, et al. Comparison of asthma treatment given in addition to inhaled corticosteroids on airway inflammation and responsiveness. Eur Respir J. 2006;27:1144–51.

    Article  PubMed  CAS  Google Scholar 

  51. Nair P, Pizzichini MM, Kjarsgaard M, Inman MD, Efthimiadis A, Pizzichini E, et al. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N Engl J Med. 2009;360:985–93.

    Article  PubMed  CAS  Google Scholar 

  52. Haldar P, Brightling CE, Hargadon B, Gupta S, Monteiro W, Sousa A, et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med. 2009;360:973–84.

    Article  PubMed  CAS  Google Scholar 

  53. •• Pavord ID, Korn S, Howarth P, Bleecker ER, Buhl R, Keene ON, et al. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet. 2012;380:651–9. This large multicenter RCT showed clear effect of mepolizumab on severe exacerbation frequency in severe eosinophilic asthmatics.

    Article  PubMed  CAS  Google Scholar 

  54. • Liu Y, Zhang S, Li DW, Jiang SJ. Efficacy of anti-interleukin-5 therapy with mepolizumab in patients with asthma: a meta-analysis of randomized placebo-controlled trials. PLoS One. 2013;8:e59872. A recent large meta-analysis summarising RCT on the use of mepolizumab in asthmatics.

    Article  PubMed  CAS  Google Scholar 

  55. Castro M, Mathur S, Hargreave F, Boulet LP, Xie F, Young J, et al. Res-5-0010 Study Group. Reslizumab for poorly controlled, eosinophilic asthma: a randomized, placebo-controlled study. Am J Respir Crit Care Med. 2011;184:1125–32.

    Article  PubMed  CAS  Google Scholar 

  56. Busse WW, Katial R, Gossage D, Sari S, Wang B, Kolbeck R, et al. Safety profile, pharmacokinetics, and biologic activity of MEDI-563, an anti-IL-5 receptor alpha antibody, in a phase I study of subjects with mild asthma. J Allergy Clin Immunol. 2010;125:1237–1244.e2.

    Article  PubMed  CAS  Google Scholar 

  57. Ghazi A, Trikha A, Calhoun WJ. Benralizumab—a humanized mAb to IL-5Ralpha with enhanced antibody-dependent cell-mediated cytotoxicity—a novel approach for the treatment of asthma. Expert Opin Biol Ther. 2012;12:113–8.

    Article  PubMed  CAS  Google Scholar 

  58. Allakhverdi Z, Allam M, Renzi PM. Inhibition of antigen-induced eosinophilia and airway hyperresponsiveness by antisense oligonucleotides directed against the common beta chain of IL-3, IL-5, GM-CSF receptors in a rat model of allergic asthma. Am J Respir Crit Care Med. 2002;165:1015–21.

    Article  PubMed  Google Scholar 

  59. Gauvreau GM, Boulet LP, Cockcroft DW, Baatjes A, Cote J, Deschesnes F, et al. Antisense therapy against CCR3 and the common beta chain attenuates allergen-induced eosinophilic responses. Am J Respir Crit Care Med. 2008;177:952–8.

    Article  PubMed  CAS  Google Scholar 

  60. Huang H, Lee C, Chiang B. Small interfering RNA against interleukin-5 decreases airway eosinophilia and hyper-responsiveness. Gene Ther. 2008;15:660–7.

    Article  PubMed  CAS  Google Scholar 

  61. Rothenberg ME, Klion AD, Roufosse FE, Kahn JE, Weller PF, Simon HU, et al. Study Group. Treatment of patients with the hypereosinophilic syndrome with mepolizumab. N Engl J Med. 2008;358:1215–28.

    Article  PubMed  CAS  Google Scholar 

  62. Saha S, Brightling CE. Eosinophilic airway inflammation in COPD. Int J Chron Obstruct Pulmon Dis. 2006;1:39–47.

    PubMed  Google Scholar 

  63. Bafadhel M, Saha S, Siva R, McCormick M, Monteiro W, Rugman P, et al. Sputum IL-5 concentration is associated with a sputum eosinophilia and attenuated by corticosteroid therapy in COPD. Respiration. 2009;78:256–62.

    Article  PubMed  CAS  Google Scholar 

  64. Abba AA. Exhaled nitric oxide in diagnosis and management of respiratory diseases. Ann Thorac Med. 2009;4:173–81.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the National Institute for Health Research Leicester Respiratory Biomedical Research Unit. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.

Compliance with Ethics Guidelines

Conflict of Interest

Ian D. Pavord has received speaker honoraria for speaking at sponsored meetings from AstraZeneca, Boehringer Ingelheim and GlaxoSmithKline; has served as a consultant for GlaxoSmithKline, AstraZeneca, Novartis, Merck, Boehringer Ingelheim and Aerocrine; has received honoraria for attending advisory panels with Almirall, Aerocrine, AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, Merck, Sharp & Dohme, Schering-Plough, Novartis, Dey and Napp; has received sponsorship to attend international scientific meetings from Boehringer Ingelheim, GlaxoSmithKline, AstraZeneca and Napp. He is also chief medical advisor to Asthma UK, a member of the UK Department of Health Asthma Strategy Group, a member of the BTS SIGN Asthma guideline group and joint editor-in-chief of Thorax.

Rachid Berair declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with animal subjects performed by any of the authors. With regard to the author’s research cited in this paper, all procedures were followed in accordance with the ethical standards of the responsible committee on human experimentation and with the Helsinki Declaration of 1975, as revised in 2000 and 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian D. Pavord.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berair, R., Pavord, I.D. Rationale and Clinical Results of Inhibiting Interleukin-5 for the Treatment of Severe Asthma. Curr Allergy Asthma Rep 13, 469–476 (2013). https://doi.org/10.1007/s11882-013-0379-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-013-0379-3

Keywords

Navigation