Skip to main content

Advertisement

Log in

New targets for modifying mast cell activation in asthma

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Mast cells play a central role in innate immunity and in orchestrating the asthmatic response. Current medication relies on β-agonists to relieve bronchoconstriction and steroids to reduce inflammation. However, recently drugs such as leukotriene-receptor antagonists and anti-immunoglobulin E have come on to the market. In this paper, a number of potential targets for modifying mast cell activation in asthma are reviewed. Some are already under study, including clinical trials (eg, tryptase inhibitors); others are more speculative (eg, inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity). In each case, where data are available, the action of the agents on human lung mast cells is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Global Initiative for Asthma Global Strategy for Asthma Management and Prevention: (Updated 05). http:// www.ginasthma.com/. Accessed December 15, 2006. Up-to-date key source on information about asthma covering all aspects, including definitions, burden of asthma, risk factors, mechanisms of asthma, diagnosis and classification, education and delivery of care, and asthma management.

  2. Scola AM, Chong LK, Suvarna SK, et al.: Desensitisation of mast cell beta2-adrenoceptor-mediated responses by salmeterol and formoterol. Br J Pharmacol 2004, 141:163- 171.

    Article  PubMed  CAS  Google Scholar 

  3. Da Silva CA, Frossard N: Potential role of stem cell factor in the asthma control by glucocorticoids. Chem Immunol Allergy 2005, 87:154–162.

    Google Scholar 

  4. Cohan VL, Undem BJ, Fox CC, et al.: Dexamethasone does not inhibit the release of mediators from human mast cells residing in airway, intestine, or skin. Am Rev Respir Dis 1989, 140:951–954.

    PubMed  CAS  Google Scholar 

  5. Zhao Y, Leung PC, Woo KS, et al.: Inhibitory effects of budesonide, desloratadine and dexamethasone on cytokine release from human mast cell line (HMC-1). Inflamm Res 2004, 53:664–669.

    Article  PubMed  CAS  Google Scholar 

  6. Pearce FL, Ali H, Barrett KE, et al.: Functional characteristics of mucosal and connective tissue mast cells of man, the rat and other animals. Int Arch Allergy Appl Immunol 1985, 77:274–276.

    PubMed  CAS  Google Scholar 

  7. Leung KB, Flint KC, Brostoff J, et al.: Effects of sodium cromoglycate and nedocromil sodium on histamine secretion from human lung mast cells. Thorax 1988, 43:756–761.

    Article  PubMed  CAS  Google Scholar 

  8. Cushley MJ, Tattersfield AE, Holgate ST: Inhaled adenosine and guanosine on airway resistance in normal and asthmatic subjects. Br J Clin Pharmacol 1983, 15:161–165.

    PubMed  CAS  Google Scholar 

  9. Fozard JR: The case for a role for adenosine in asthma: almost convincing? Curr Opin Pharmacol 2003, 3:264–269. Careful discussion of the evidence for a role of adenosine in asthma.

    Article  PubMed  CAS  Google Scholar 

  10. Holgate ST: The identification of the adenosine A2B receptor as a novel therapeutic target in asthma. Br J Pharmacol 2005, 145:1009–1015.

    Article  PubMed  CAS  Google Scholar 

  11. Livingston M, Heaney LG, Ennis M: Adenosine, inflammation and asthma-a review. Inflamm Res 2004, 53:171–178.

    Article  PubMed  CAS  Google Scholar 

  12. Richards R, Phillips GD, Holgate ST: Nedocromil sodium is more potent than sodium cromoglycate against AMP induced bronchoconstriction in atopic asthmatic subjects. Clin Exp Allergy 1989, 19:285–291.

    Article  PubMed  CAS  Google Scholar 

  13. Hughes PJ, Holgate ST, Church MK: Adenosine inhibits and potentiates IgE-dependent histamine release from human lung mast cells by an A2-purinoceptor mechanism. Biochem Pharmacol 1984, 33:3847–3852.

    Article  PubMed  CAS  Google Scholar 

  14. Peachell PT, Columbo M, Kagey-Sobotka A, et al.: Adenosine potentiates mediator release from human lung mast cells. Am Rev Respir Dis 1988, 138:1143–1151.

    PubMed  CAS  Google Scholar 

  15. Forsythe P, Mc Garvey LPA, Heaney LG, et al.: Adenosine induces histamine release from human bronchoalveolar lavage mast cells. Clin Sci 1999, 96:349–355.

    Article  PubMed  CAS  Google Scholar 

  16. Feoktistov I, Biaggioni I: Adenosine A2b receptors evoke interleukin-8 secretion in human mast cells. An enprofylline-sensitive mechanism with implications for asthma. J Clin Invest 1995, 96:1979–1986.

    Article  PubMed  CAS  Google Scholar 

  17. Zhong H, Chunn JL, Volmer JB, et al.: Adenosine-mediated mast cell degranulation in adenosine deaminase-de.- cient mice. J Pharmacol Exp Ther 2001, 298:433–440.

    PubMed  CAS  Google Scholar 

  18. Chunn JL, Young HW, Banerjee SK, et al.: Adenosine-dependent airway inflammation and hyperresponsiveness in partially adenosine deaminase-deficient mice. J Immunol 2001, 167:4676–4685.

    PubMed  CAS  Google Scholar 

  19. Hart PH: Regulation of the Inflammatory response in asthma by mast cell products. Immunol Cell Biol 2001, 79:149–153.

    Article  PubMed  CAS  Google Scholar 

  20. He S, Aslam A, Gaca MD, et al.: Inhibitors of tryptase as mast cell-stabilizing agents in the human airways: effects of tryptase and other agonists of proteinase-activated receptor 2 on histamine release. J Pharmacol Exp Ther 2004, 309:119–126.

    Article  PubMed  CAS  Google Scholar 

  21. Schmidlin F, Amadesi S, Vidil R, et al.: Expression and function of proteinase-activated receptor 2 in human bronchial smooth muscle. Am J Respir Crit Care Med 2001, 164:1276–1281.

    PubMed  CAS  Google Scholar 

  22. Knight DA, Lim S, Scaffidi AK, et al.: Protease-activated receptors in human airways: upregulation of PAR-2 in respiratory epithelium from patients with asthma. J Allergy Clin Immunol 2001, 108:797–803.

    Article  PubMed  CAS  Google Scholar 

  23. Schmidlin F, Amadesi S, Dabbagh K, et al.: Protease-activated receptor 2 mediates eosinophil infiltration and hyperreactivity in allergic inflammation of the airway. J Immunol 2002, 169:5315–5321.

    PubMed  Google Scholar 

  24. Cairns JA: Inhibitors of mast cell tryptase beta as therapeutics for the treatment of asthma and Inflammatory disorders. Pulm Pharmacol Ther 2005, 18:55–66. Excellent overview of tryptase and description of many tryptase inhibitors undergoing preclinical and clinical investigation.

    Article  PubMed  CAS  Google Scholar 

  25. Brightling CE, Bradding P, Symon FA, et al.: Mast-cell infiltration of airway smooth muscle in asthma. N Engl J Med 2002, 346:1699–1705.

    Article  PubMed  Google Scholar 

  26. Carroll NG, Mutavdzic S, James AL: Distribution and degranulation of airway mast cells in normal and asthmatic subjects. Eur Respir J 2002, 19:879–885.

    Article  PubMed  CAS  Google Scholar 

  27. Amin K, Janson C, Boman G, et al.: The extracellular deposition of mast cell products is increased in hypertrophic airways smooth muscles in allergic asthma but not in non-allergic asthma. Allergy 2005, 60:1241–1247.

    Article  PubMed  CAS  Google Scholar 

  28. Berger P, Girodet PO, Begueret H, et al.: Tryptase-stimulated human airway smooth muscle cells induce cytokine synthesis and mast cell chemotaxis. FASEB J 2003, 17:2139–2141.

    PubMed  CAS  Google Scholar 

  29. Brightling CE, Kaur D, Berger P, et al.: Differential expression of CCR3 and CXCR3 by human lung and bone marrow-derived mast cells: implications for tissue mast cell migration. J Leuk Biol 2005, 77:S759-S66.

    Article  CAS  Google Scholar 

  30. Brightling CE, Ammit AJ, Kaur D, et al.: The CXCL10/ CXCR3 axis mediates human lung mast cell migration to asthmatic airway smooth muscle. Am J Respir Crit Care Med 2005, 171:1103–1108.

    Article  PubMed  Google Scholar 

  31. Amin K, Janson C, Harvima I, et al.: CC chemokine receptors CCR1 and CCR4 are expressed on airway mast cells in allergic asthma. J Allergy Clin Immunol 2005, 116:1383–1385.

    Article  PubMed  CAS  Google Scholar 

  32. Scott K, Bradding P: Human mast cell chemokines receptors: implications for mast cell tissue localization in asthma. Clin Exp Allergy 2005, 35:693–697.

    Article  PubMed  CAS  Google Scholar 

  33. Johnston SL: Viruses and asthma. Allergy 1998, 53:922–932.

    Article  PubMed  CAS  Google Scholar 

  34. Chaudhuri N, Dower SK, Whyte MK, et al.: Toll-like receptors and chronic lung disease. Clin Sci (Lond) 2005, 109:125–133.

    Article  CAS  Google Scholar 

  35. Kulka M, Metcalfe DD: TLR3 activation inhibits human mast cell attachment to fibronectin and vitronectin. Mol Immunol 2005, [Epub ahead of print].

  36. Marone G, Rossi FW, Bova M, et al.: Superallergens: a novel mechanism of IgE-mediated activation of human basophils and mast cells. Clin Exp Allergy Reviews 2004, 4:64–75.

    Article  CAS  Google Scholar 

  37. Varadaradjalou S, Feger F, Thieblemont N, et al.: Toll-like receptor 2 (TLR2) and TLR4 differentially activate human mast cells. Eur J Immunol 2003, 33:899–906.

    Article  PubMed  CAS  Google Scholar 

  38. Kulka M, Alexopoulou L, Flavell RA, et al.: Activation of mast cells by double-stranded RNA: evidence for activation through Toll-like receptor 3. J Allergy Clin Immunol 2004, 114:174–182.

    Article  PubMed  CAS  Google Scholar 

  39. Okumura S, Kashiwakura J-I, Tomita H, et al.: Identification of specific gene expression profiles in human mast cells mediated by Toll-like receptor 4 and FcepsilonRI. Blood 2003, 102:2547–2554.

    Article  PubMed  CAS  Google Scholar 

  40. Shakarjian MP, Eiseman E, Penhallow RC, et al.: 3-Hydroxy- 3-methylglutaryl-coenzyme A reductase inhibition in a rat mast cell line. Impairment of tyrosine kinase-dependent signal transduction and the subsequent degranulation response. J Biol Chem 1993, 268:15252–15259.

    PubMed  CAS  Google Scholar 

  41. Roche CM, Trimble ER, Ennis M: Effect of in vivo and in vitro lovastatin treatment on mast cell activation. Int Arch Allergy Immunol 1995, 108:240–246.

    Article  PubMed  CAS  Google Scholar 

  42. Veillard NR, Braunersreuther V, Arnaud C, et al.: Simvastatin modulates chemokine and chemokine receptor expression by geranylgeranyl isoprenoid pathway in human endothelial cells and macrophages. Atherosclerosis 2005, [Epub ahead of print].

  43. Lee JH, Lee DS, Kim EK, et al.: Simvastatin inhibits cigarette smoking-induced emphysema and pulmonary hypertension in rat lungs. Am J Respir Crit Care Med 2005, 172:987–993.

    Article  PubMed  Google Scholar 

  44. Jacobson JR, Barnard JW, Grigoryev DN, et al.: Simvastatin attenuates vascular leak and inflammation in murine Inflammatory lung injury. Am J Physiol Lung Cell Mol Physiol 2005, 288:L1026-L1032.

    Article  PubMed  CAS  Google Scholar 

  45. McKay A, Leung BP, McInnes IB, et al.: A novel anti-Inflammatory role of simvastatin in a murine model of allergic asthma. J Immunol 2004, 172:2903–2908.

    PubMed  CAS  Google Scholar 

  46. Weitz-Schmidt G: Statins as anti-Inflammatory agents. Trends Pharmacol Sci 2002, 10:482–486.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madeleine Ennis BSc, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ennis, M. New targets for modifying mast cell activation in asthma. Curr Allergy Asthma Rep 6, 247–251 (2006). https://doi.org/10.1007/s11882-006-0042-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-006-0042-3

Keywords

Navigation