Skip to main content

Advertisement

Log in

Dust storms modeling and their impacts on air quality and radiation budget over Iran using WRF-Chem

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

The main objective of this research work is to simulate dust storms and evaluate their impacts on air quality and radiation budget over Iran using WRF-Chem coupled model. Two appropriately strong dust storms: May 22–25, 2012 and April 22–25, 2015. According to the results, in the Middle East, countries where sources with highest emission rates are placed include Syria, Iraq, Saudi Arabia, Turkmenistan, and major hot spots inside Iran in the southwestern regions. During both of above storms, very high dust concentrations have been simulated. Domain and simulation period average dust concentration have been estimated to be 402 and 515 μg/m3 over Iran during May-2012 and April-2015 dust storms, respectively. Also, 24 h average dust concentration exceeds 7000 μg/m3 in some regions in the Middle East. Comparison of simulated and observed extinction coefficients and aerosol optical depths (AOD) shows an underestimation for domain averaged AOD. However, spatial and temporal distribution patterns of dust have been well simulated by the developed model. Using two parallel simulations with and without dusts, impacts of dust aerosols on radiation and some meteorological parameters have been evaluated. According to the results, dust aerosols led to negative short-wave (SW) radiative perturbation at the earth’s surface and top of atmosphere (TOA). These radiative perturbations were positive for long-wave (LW) radiation. Stronger negative diurnal perturbations for sensible heat flux, rather than positive nocturnal perturbation which caused 24 h average perturbation to be negative. Nevertheless, the weaker diurnal (negative) rather than nocturnal (positive) surface temperature perturbations made the 24-h average temperature perturbation positive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alizadeh-Choobari O, Zawar-Reza P, Sturman A (2014) The “wind of 120days” and dust storm activity over the Sistan Basin. Atmos Res 143:328–341

    Article  CAS  Google Scholar 

  • Alizadeh-Choobari O, Ghafarian P, Owlad E (2015) Temporal variations in the frequency and concentration of dust events over Iran based on surface observations. Int J Climatol 36:2050–2062

    Article  Google Scholar 

  • Aryal R, Beecham S, Kamruzzaman M et al (2015) Temporal change of PM10 and its mass fraction during a dust storm in September 2009 in Australia. Air Qual Atmos Health 8:483–494

    Article  CAS  Google Scholar 

  • Ashrafi K, Shafiepour-Motlagh M, Aslemand A, Ghader S (2014) Dust storm simulation over Iran using HYSPLIT. J Environ Heal Sci Eng 12:9

    Article  Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land surface—hydrology model with the Penn State—NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev 129:569–585

    Article  Google Scholar 

  • Chen S, Huang J, Zhao C et al (2013) Modeling the transport and radiative forcing of Taklimakan dust over the Tibetan Plateau: a case study in the summer of 2006. J Geophys Res Atmos 118:797–812

    Article  Google Scholar 

  • Chin M, Ginoux P, Kinne S et al (2002) Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and Sun photometer measurements. J Atmos Sci 59:461–483

    Article  Google Scholar 

  • Choobari OA, Zawar-Reza P, Sturman A (2014) The global distribution of mineral dust and its impacts on the climate system: a review. Atmos Res 138:152–165

    Article  CAS  Google Scholar 

  • DeMott PJ, Prenni AJ, Liu X et al (2010) Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc Natl Acad Sci 107:11217–11222

    Article  CAS  Google Scholar 

  • Feng Q, Hsu NC, Yang P, Tsay S-C (2011) Effect of thin cirrus clouds on dust optical depth retrievals from MODIS observations. IEEE Trans Geosci Remote Sens 49:2819–2827

    Article  Google Scholar 

  • Giannadaki D, Pozzer A, Lelieveld J (2014) Modeled global effects of airborne desert dust on air quality and premature mortality. Atmos Chem Phys 14:957–968. doi:10.5194/acp-14-957-2014

    Article  Google Scholar 

  • Ginoux P, Chin M, Tegen I et al (2001) Sources and distributions of dust aerosols simulated with the GOCART model. J Geophys Res Atmos 106:20255–20273

    Article  Google Scholar 

  • Ginoux P, Prospero JM, Gill TE et al (2012) Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev Geophys. doi:10.1029/2012RG000388

  • Grell GA, Dévényi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett 29:38-1–38-4

    Article  Google Scholar 

  • Grell GA, Peckham SE, Schmitz R et al (2005) Fully coupled “online” chemistry within the WRF model. Atmos Environ 39:6957–6975

    Article  CAS  Google Scholar 

  • Heald CL, Ridley DA, Kroll JH et al (2014) Contrasting the direct radiative effect and direct radiative forcing of aerosols. Atmos Chem Phys 14:5513–5527

    Article  CAS  Google Scholar 

  • Holben BN, Tanre D, Smirnov A et al (2001) An emerging ground-based aerosol climatology: aerosol optical depth from AERONET. J Geophys Res Atmos 106:12067–12097

    Article  Google Scholar 

  • Hong S-Y, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341

    Article  Google Scholar 

  • Huang X-X, Wang T-J, Jiang F et al (2013) Studies on a severe dust storm in East Asia and its impact on the air quality of Nanjing, China. Aerosol Air Qual Res 13:179–193

    Google Scholar 

  • Kakikawa M, Kobayashi F, Maki T et al (2008) Dustborne microorganisms in the atmosphere over an Asian dust source region, Dunhuang. Air Qual Atmos Health 1:195–202

    Article  CAS  Google Scholar 

  • Kalenderski S, Stenchikov G, Zhao C (2013) Modeling a typical winter-time dust event over the Arabian Peninsula and the Red Sea. Atmos Chem Phys 13:1999

    Article  CAS  Google Scholar 

  • Kumar P, Sokolik IN, Nenes A (2011) Measurements of cloud condensation nuclei activity and droplet activation kinetics of fresh unprocessed regional dust samples and minerals. Atmos Chem Phys 11:3527–3541

    Article  CAS  Google Scholar 

  • Kumar R, Barth MC, Pfister GG et al (2014) WRF-Chem simulations of a typical pre-monsoon dust storm in northern India: influences on aerosol optical properties and radiation budget. Atmos Chem Phys 14:2431–2446

    Article  Google Scholar 

  • Lin Y-L, Farley RD, Orville HD (1983) Bulk parameterization of the snow field in a cloud model. J Clim Appl Meteorol 22:1065–1092

    Article  Google Scholar 

  • Liu L, Huang X, Ding A, Fu C (2016) Dust-induced radiative feedbacks in north China: a dust storm episode modeling study using WRF-Chem. Atmos Environ 129:43–54

    Article  CAS  Google Scholar 

  • Mahowald NM, Kiehl LM (2003) Mineral aerosol and cloud interactions. Geophys Res Lett. doi:10.1029/2002GL016762

  • Mahowald N, Albani S, Kok JF et al (2014) The size distribution of desert dust aerosols and its impact on the earth system. Aeolian Res 15:53–71. doi:10.1016/j.aeolia.2013.09.002

    Article  Google Scholar 

  • McComiskey A, Schwartz SE, Schmid B et al (2008) Direct aerosol forcing: calculation from observables and sensitivities to inputs. J Geophys Res Atmos. doi:10.1029/2007JD009170

  • Mlawer EJ, Taubman SJ, Brown PD et al (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res Atmos 102:16663–16682

    Article  CAS  Google Scholar 

  • Nair VS, Solmon F, Giorgi F et al (2012) Simulation of South Asian aerosols for regional climate studies. J Geophys Res Atmos. doi:10.1029/2011JD016711

  • Olivier JGJ, Bouwman AF, der Maas CWM, Berdowski JJM (1994) Emission database for global atmospheric research (EDGAR). In: Non-CO2 greenhouse gases: why and how to control? Springer, pp 93–106

  • Paulson CA (1970) The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J Appl Meteorol 9:857–861

    Article  Google Scholar 

  • Prospero JM, Ginoux P, Torres O et al (2002) Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev Geophys. doi:10.1029/2000RG000095

  • Rezazadeh M, Irannejad P, Shao Y (2013) Climatology of the Middle East dust events. Aeolian Res 10:103–109

    Article  Google Scholar 

  • Satheesh SK, Krishna Moorthy K (2005) Radiative effects of natural aerosols: a review. Atmos Environ 39:2089–2110

    Article  CAS  Google Scholar 

  • Schultz MG, Backman L, Balkanski Y, et al (2007) REanalysis of the TROpospheric chemical composition over the past 40 years (RETRO)—a long-term global modeling study of tropospheric chemistry. Final Report, Jülich/Hamburg, Ger 1–122

  • Shahsavani A, Naddafi K, Haghighifard NJ et al (2012) The evaluation of PM 10, PM 2.5, and PM 1 concentrations during the Middle Eastern Dust (MED) events in Ahvaz, Iran, from April through September 2010. J Arid Environ 77:72–83

    Article  Google Scholar 

  • Shao Y (2008) Physics and modelling of wind erosion. Springer Science & Business Media

  • Skamarock WC, Klemp JB, Dudhia J, et al (2008) A description of the advanced research WRF Version 3. Natl Cent Atmos Res Boulder Co Mesoscale Microscale Meteorol Div 1–113

  • Stockwell WR, Middleton P, Chang JS, Tang X (1990) The second generation regional acid deposition model chemical mechanism for regional air quality modeling. J Geophys Res Atmos 95:16343–16367

    Article  CAS  Google Scholar 

  • Zhang Y, Liu Y, Kucera PA et al (2015) Dust modeling over Saudi Arabia using WRF-Chem: March 2009 severe dust case. Atmos Environ 119:118–130

    Article  CAS  Google Scholar 

  • Zhao C, Liu X, Leung LR et al (2010) The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: modeling sensitivities to dust emissions and aerosol size treatments. Atmos Chem Phys 10:8821–8838

    Article  CAS  Google Scholar 

  • Zhao C, Liu X, Ruby Leung L, Hagos S (2011) Radiative impact of mineral dust on monsoon precipitation variability over West Africa. Atmos Chem Phys 11:1879–1893

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Irannejad and Dr. Alizadeh-Choobari from Institute of Geophysics at the University of Tehran, and the anonymous reviewer for their helpful suggestions and comments on this article, and Dr. Niksokhan and Mr. Roozitalab from Computing Center at the Graduate Faculty of Environment for providing hardware facilities for this research work. We also acknowledge the principal investigators of AERONET station at Kuwait University for providing observational data. All MODIS and AIRS data products used in this investigation are obtained using EARTHDATA (https://earthdata.nasa.gov) and GIOVANNI (http://giovanni.sci.gsfc.nasa.gov). It should be noted that major parts of the visualization and analysis of the simulation’s results have been done using Integrated Data Viewer (IDV) from UCAR/Unidata and Climate Data Operators (CDO). This research did not receive any specific grant from funding agencies from the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khosro Ashrafi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashrafi, K., Motlagh, M.S. & Neyestani, S.E. Dust storms modeling and their impacts on air quality and radiation budget over Iran using WRF-Chem. Air Qual Atmos Health 10, 1059–1076 (2017). https://doi.org/10.1007/s11869-017-0494-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-017-0494-8

Keywords

Navigation