Skip to main content
Log in

Significance of volatile organic compounds and oxides of nitrogen on surface ozone formation at semi-arid tropical urban site, Hyderabad, India

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

The chemistry and variation in light molecular weight (C2–C5) volatile organic compounds (VOCs) and nitrogen oxides (NO x  = NO + NO2) over the formation of tropospheric ozone (O3) was studied for a time period of 1 year (2013) at a tropical urban site located in Deccan plateau region of Hyderabad, India, with semi-arid climate. Diel pattern of hydrocarbons showed maxima in the morning and night and minima in the afternoon. Ethylene and propylene showed relatively larger diurnal amplitude than other hydrocarbons. Among the analyzed hydrocarbons, acetylene was the most abundant with an annual mean of 5.5 ± 1.3 ppbv. All the VOCs exhibited a seasonal variation with monsoon and summer minimum and winter maximum. Ozone formation potentials (OFP) and propylene-equivalents (propy-equiv.) were calculated to account the contribution of individual hydrocarbons towards formation of O3. Propylene had the highest contribution of propy-equiv. (34 %) and OFP (28.4 %) among the VOCs observed. The concentrations of VOCs and their reactivity with hydroxyl radicals played a significant role on the levels of propy-equiv. and OFP. Strong correlations 0.65 and 0.77 were observed between O3 vs. propy-equiv. and O3 vs. OFP, respectively. The crossover point relationship between NO x , VOCs, and O3 showed enhancement of O3 at lower levels and decreased at higher levels of NO x in the range of VOCs concentrations studied. Among hydrocarbons, propylene (10) and ethane (6.5) showed the highest and lowest crossover points, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Atkinson R (1986) Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions. Chem Rev 86:69–201. doi:10.1021/cr00071a004

    Article  CAS  Google Scholar 

  • Atkinson R (1997) Gas-phase tropospheric chemistry of volatile organic compounds: 1. Alkanes and alkenes. J Phys Chem Ref Data 26:215–290. doi:10.1063/1.556012

    Article  CAS  Google Scholar 

  • Atkinson R, Arey J (2003) Atmospheric degradation of volatile organic compounds. Chem Rev 103:4605–4638. doi:10.1021/cr0206420

    Article  CAS  Google Scholar 

  • Barletta B et al (2005) Volatile organic compounds in 43 Chinese cities. Atmos Environ 39:5979–5990. doi:10.1016/j.atmosenv.2005.06.029

    Article  CAS  Google Scholar 

  • Blake DR, Rowland FS (1995) Urban leakage of liquefied petroleum gas and its impact on Mexico City air quality. Science (New York, NY) 269:953–956. doi:10.1126/science.269.5226.953

    Article  CAS  Google Scholar 

  • Burnett RT et al (1994) Effects of low ambient levels of ozone and sulfates on the frequency of respiratory admissions to Ontario hospitals. Environ Res 65:172–194

    Article  CAS  Google Scholar 

  • Carter WPL (1994) Development of ozone reactivity scales for volatile organic compounds. Air Waste 44:881–899. doi:10.1080/1073161X.1994.10467290

    Article  CAS  Google Scholar 

  • Caselli M, de Gennaro G, Marzocca A, Trizio L, Tutino M (2010) Assessment of the impact of the vehicular traffic on BTEX concentration in ring roads in urban areas of Bari (Italy). Chemosphere 81:306–311. doi:10.1016/j.chemosphere.2010.07.033

    Article  CAS  Google Scholar 

  • Chameides WL et al (1992) Ozone precursor relationships in the ambient atmosphere. J Geophys Res Atmos 97:6037–6055. doi:10.1029/91JD03014

    Article  CAS  Google Scholar 

  • Chen T-Y, Simpson IJ, Blake DR, Rowland FS (2001) Impact of the leakage of liquefied petroleum gas (LPG) on Santiago air quality. Geophys Res Lett 28:2193–2196. doi:10.1029/2000GL012703

    Article  CAS  Google Scholar 

  • Cheng L, Fu L, Angle RP, Sandhu HS (1997) Seasonal variations of volatile organic compounds in Edmonton, Alberta. Atmos Environ 31:239–246. doi:10.1016/1352-2310(96)00170-7

    Article  CAS  Google Scholar 

  • Choi J, Hwang G (2011) A case-control study: exposure assessment of volatile organic compounds and formaldehyde for asthma in children. Epidemiology 22:S242. doi:10.1097/01.ede.0000392432.82923.65

  • De Gouw JA et al (2005) Budget of organic carbon in a polluted atmosphere: Results from the New England Air Quality Study in 2002. J Geophys Res-Atmos (1984–2012) 110(D16)

  • Duan J, Tan J, Yang L, Wu S, Hao J (2008) Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing. Atmos Res 88:25–35. doi:10.1016/j.atmosres.2007.09.004

    Article  CAS  Google Scholar 

  • Guenther A et al (1995) A global model of natural volatile organic compound emissions. J Geophys Res Atmos 100:8873–8892. doi:10.1029/94JD02950

    Article  CAS  Google Scholar 

  • Guttikunda S, Kopakka R (2014) Source emissions and health impacts of urban air pollution in Hyderabad, India. Air Qual Atmos Health 7:195–207. doi:10.1007/s11869-013-0221-z

    Article  CAS  Google Scholar 

  • Hagerman LM, Aneja VP, Lonneman WA (1997) Characterization of non-methane hydrocarbons in the rural southeast United States. Atmos Environ 31:4017–4038. doi:10.1016/S1352-2310(97)00223-9

    Article  CAS  Google Scholar 

  • Han S, Bian H, Feng Y, Liu A, Li X, Zeng F, Zhang X (2011) Analysis of the relationship between O3, NO and NO2 in Tianjin, China. Aerosol Air Qual Res 11:128–139. doi:10.4209/aaqr.2010.07.0055

    Google Scholar 

  • Harley RA, Hannigan MP, Cass GR (1992) Respeciation of organic gas emissions and the detection of excess unburned gasoline in the atmosphere. Environ Sci Technol 26:2395–2408

  • Kanakidou M et al (2005) Organic aerosol and global climate modelling: a review. Atmos Chem Phys 5:1053–1123. doi:10.5194/acp-5-1053-2005

    Article  CAS  Google Scholar 

  • Lai C-H, Chang C-C, Wang C-H, Shao M, Zhang Y, Wang J-L (2009) Emissions of liquefied petroleum gas (LPG) from motor vehicles. Atmos Environ 43:1456–1463. doi:10.1016/j.atmosenv.2008.11.045

    Article  CAS  Google Scholar 

  • Liakakou E, Bonsang B, Williams J, Kalivitis N, Kanakidou M, Mihalopoulos N (2009) C2–C8 NMHCs over the Eastern Mediterranean: seasonal variation and impact on regional oxidation chemistry. Atmos Environ 43:5611–5621. doi:10.1016/j.atmosenv.2009.07.067

    Article  CAS  Google Scholar 

  • Liu Z, Li N, Wang N (2015) Characterization and source identification of ambient VOCs in Jinan, China. Air Qual Atmos Health 1–7 doi:10.1007/s11869-015-0339-2

  • Mudliar S et al (2010) Bioreactors for treatment of VOCs and odours—a review. J Environ Manag 91:1039–1054. doi:10.1016/j.jenvman.2010.01.006

    Article  CAS  Google Scholar 

  • Na K, Kim YP, Moon K-C, Moon I, Fung K (2001) Concentrations of volatile organic compounds in an industrial area of Korea. Atmos Environ 35:2747–2756. doi:10.1016/S1352-2310(00)00313-7

    Article  CAS  Google Scholar 

  • Offenberg ML, Jaoui M, Kleindienst TE (2011) Contributions of biogenic and anthropogenic hydrocarbons to secondary organic aerosol during 2006 in Research Triangle Park, NC. Aerosol Air Qual Res 11:99–108. doi:10.4209/aaqr.2010.11.0102

    CAS  Google Scholar 

  • Piccot SD, Watson JJ, Jones JW (1992) A global inventory of volatile organic compound emissions from anthropogenic sources. J Geophys Res Atmos 97:9897–9912. doi:10.1029/92JD00682

    Article  CAS  Google Scholar 

  • Poisson N, Kanakidou M, Crutzen P (2000) Impact of non-methane hydrocarbons on tropospheric chemistry and the oxidizing power of the global troposphere: 3-dimensional modelling results. J Atmos Chem 36:157–230. doi:10.1023/A:1006300616544

    Article  CAS  Google Scholar 

  • Seila RL, Main HH, Arriaga JL, Martinez G, Ramadan AB (2001) Atmospheric volatile organic compound measurements during the 1996 Paso del Norte Ozone Study. Sci Total Environ 276:153–169

    Article  CAS  Google Scholar 

  • Seinfeld JH (1989) Urban air pollution: state of the science. Science (New York, NY) 243:745–752. doi:10.1126/science.243.4892.745

    Article  CAS  Google Scholar 

  • Shao M, Zhang Y, Zeng L, Tang X, Zhang J, Zhong L, Wang B (2009) Ground-level ozone in the Pearl River Delta and the roles of VOC and NOx in its production. J Environ Manag 90:512–518. doi:10.1016/j.jenvman.2007.12.008

    Article  CAS  Google Scholar 

  • Sillman S (1999) The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmos Environ 33:1821–1845. doi:10.1016/S1352-2310(98)00345-8

    Article  CAS  Google Scholar 

  • So KL, Wang T (2004) C3–C12 non-methane hydrocarbons in subtropical Hong Kong: spatial–temporal variations, source–receptor relationships and photochemical reactivity. Sci Total Environ 328:161–174. doi:10.1016/j.scitotenv.2004.01.029

    Article  CAS  Google Scholar 

  • Solomon PA (1994) planning and managing regional air quality: modeling and measurement studies. Taylor & Francis, Florida

  • Steinfeld JI (1998) Atmospheric chemistry and physics: from air pollution to climate change. Environ Sci Policy Sustain Dev 40:26. doi:10.1080/00139157.1999.10544295

  • Swamy YV, Venkanna R, Nikhil GN, Chitanya D, Sinha PR, Ramakrishna M, Rao AG (2012) Impact of nitrogen oxides, volatile organic compounds and black carbon on atmospheric ozone levels at a semi arid urban site in Hyderabad. Aerosol Air Qual Res 12:662–671. doi:10.4209/aaqr.2012.01.0019

    CAS  Google Scholar 

  • Tan J-H, Guo S-J, Ma Y-L, Yang F-M, He K-B, Yu Y-C, Wang J-W, Shi Z-B, Chen G-C (2012) Non-methane hydrocarbons and their ozone formation potentials in Foshan, China. Aerosol Air Qual Res 12:387–398. doi:10.4209/aaqr.2011.08.0127

    CAS  Google Scholar 

  • Tang JH et al (2007) Characteristics and diurnal variations of NMHCs at urban, suburban, and rural sites in the Pearl River Delta and a remote site in South China. Atmos Environ 41:8620–8632. doi:10.1016/j.atmosenv.2007.07.029

    Article  CAS  Google Scholar 

  • Toro AR, Seguel R, Morales S RE, Leiva G M (2014) Ozone, nitrogen oxides, and volatile organic compounds in a central zone of Chile. Air Qual Atmos Health 1–13 doi:10.1007/s11869-014-0306-3

  • Toro R, Donoso C, Seguel R, Morales RES, Leiva MG (2014b) Photochemical ozone pollution in the Valparaiso Region, Chile. Air Qual Atmos Health 7:1–11. doi:10.1007/s11869-013-0218-7

    Article  CAS  Google Scholar 

  • Venkanna R, Nikhil GN, Siva Rao T, Sinha PR, Swamy YV (2014) Environmental monitoring of surface ozone and other trace gases over different time scales: chemistry, transport and modeling. Int J Environ Sci Technol 1–10 doi:10.1007/s13762-014-0537-8

  • Watson JG, Chow JC, Fujita EM (2001) Review of volatile organic compound source apportionment by chemical mass balance. Atmos Environ 35:1567–1584. doi:10.1016/S1352-2310(00)00461-1

    Article  CAS  Google Scholar 

  • Yerramsetti VS, Gauravarapu Navlur N, Rapolu V, Dhulipala NSKC, Sinha PR, Srinavasan S, Anupoju GR (2013a) Role of nitrogen oxides, black carbon, and meteorological parameters on the variation of surface ozone levels at a tropical urban site—Hyderabad, India. CLEAN - Soil Air Water 41:215–225. doi:10.1002/clen.201100635

    Article  CAS  Google Scholar 

  • Yerramsetti VS, Sharma AR, Navlur NG, Rapolu V, Dhulipala NC, Sinha P (2013b) The impact assessment of Diwali fireworks emissions on the air quality of a tropical urban site, Hyderabad, India, during three consecutive years. Environ Monit Assess 185:7309–7325

    Article  CAS  Google Scholar 

  • Zimmerman PR, Chatfield RB, Fishman J, Crutzen PJ, Hanst PL (1978) Estimates on the production of CO and H2 from the oxidation of hydrocarbon emissions from vegetation. Geophys Res Lett 5:679–682. doi:10.1029/GL005i008p00679

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Director, Indian Institute of Chemical Technology for encouragement and support. Fruitful discussions and constant support extended by Prof. Shyam Lal, project director ATCTM during the course of the project, are highly acknowledged. We also acknowledge ATCTM under ISRO-GBP trace gas program for financial support and Tata Institute of Fundamental Research (National Balloon Facility) at Hyderabad for providing lab space.

Conflict of interest

All the authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. V. Swamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkanna, R., Nikhil, G.N., Sinha, P.R. et al. Significance of volatile organic compounds and oxides of nitrogen on surface ozone formation at semi-arid tropical urban site, Hyderabad, India. Air Qual Atmos Health 9, 379–390 (2016). https://doi.org/10.1007/s11869-015-0347-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-015-0347-2

Keywords

Navigation