Skip to main content
Log in

Rings with linearly ordered right annihilators

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We introduce the class of lineal rings, defined by the property that the lattice of right annihilators is linearly ordered. We obtain results on the structure of these rings, their ideals, and important radicals; for instance, we show that the lower and upper nilradicals of these rings coincide. We also obtain an affirmative answer to the Köthe Conjecture for this class of rings. We study the relationships between lineal rings, distributive rings, Bézout rings, strongly prime rings, and Armendariz rings. In particular, we show that lineal rings need not be Armendariz, but they fall not far short.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Amitsur, Nil radicals. Historical notes and some new results, in Rings, modules and radicals (Proc. Internat. Colloq., Keszthely, 1971), North-Holland, Amsterdam, 1973, pp. 47–65. Colloq. Math. Soc. János Bolyai, Vol. 6.

    MATH  Google Scholar 

  2. D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), 2265–2272.

    Article  MathSciNet  MATH  Google Scholar 

  3. V. A. Andrunakievič, Radicals of associative rings. I, Mat. Sb. N.S. 44(86) (1958), 179–212.

    MathSciNet  Google Scholar 

  4. E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470–473.

    Article  MathSciNet  MATH  Google Scholar 

  5. G. M. Bergman, The diamond lemma for ring theory, Adv. in Math. 29 (1978), 178–218.

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Bessenrodt, H. H. Brungs and G. Törner, Right chain rings, part 1, Schriftenreihe des Fachbereichs Mathematik der Universität Duisburg, Vol. 181, 1990.

    MATH  Google Scholar 

  7. H. H. Brungs, Rings with a distributive lattice of right ideals, J. Algebra 40 (1976), 392–400.

    Article  MathSciNet  MATH  Google Scholar 

  8. H. H. Brungs and N. I. Dubrovin, A classification and examples of rank one chain domains, Trans. Amer. Math. Soc. 355 (2003), 2733–2753.

    Article  MathSciNet  MATH  Google Scholar 

  9. V. Camillo, Distributive modules, J. Algebra 36 (1975), 16–25.

    Article  MathSciNet  MATH  Google Scholar 

  10. V. Camillo and P. P. Nielsen, McCoy rings and zero-divisors, J. Pure Appl. Algebra 212 (2008), 599–615.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Ferrero and G. Törner, On the ideal structure of right distributive rings, Comm. Algebra 21 (1993), 2697–2713.

    Article  MathSciNet  MATH  Google Scholar 

  12. K. R. Goodearl and D. Handelman, Simple self-injective rings, Comm. Algebra 3 (1975), 797–834.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Handelman and J. Lawrence, Strongly prime rings, Trans. Amer. Math. Soc. 211 (1975), 209–223.

    Article  MathSciNet  MATH  Google Scholar 

  14. Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168 (2002), 45–52.

    Article  MathSciNet  MATH  Google Scholar 

  15. Y. Hirano, D. van Huynh and J. K. Park, On rings whose prime radical contains all nilpotent elements of index two, Arch. Math. (Basel) 66 (1996), 360–365.

    Article  MathSciNet  MATH  Google Scholar 

  16. C. Huh, Y. Lee and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), 751–761.

    Article  MathSciNet  MATH  Google Scholar 

  17. C. U. Jensen, On characterizations of Prüfer rings, Math. Scand. 13 (1963), 90–98.

    MathSciNet  MATH  Google Scholar 

  18. N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), 477–488.

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, Vol. 189, Springer-Verlag, New York, 1999.

    Book  Google Scholar 

  20. T. Y. Lam, A first course in noncommutative rings, second ed., Graduate Texts in Mathematics, Vol. 131, Springer-Verlag, New York, 2001.

    Book  Google Scholar 

  21. T.-K. Lee and T.-L. Wong, On Armendariz rings, Houston J. Math. 29 (2003), 583–593 (electronic).

    MathSciNet  MATH  Google Scholar 

  22. G. Marks and R. Mazurek, Annelidan rings, Forum Math., to appear.

  23. G. Marks, R. Mazurek and M. Ziembowski, A unified approach to various generalizations of Armendariz rings, Bull. Aust. Math. Soc. 81 (2010), 361–397.

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Mazurek, Distributive rings with Goldie dimension one, Comm. Algebra 19 (1991), 931–944.

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Mazurek and E. R. Puczyłowski, On nilpotent elements of distributive rings, Comm. Algebra 18 (1990), 463–471.

    Article  MathSciNet  MATH  Google Scholar 

  26. E. R. Puczyłowski, Questions related to Koethe’s nil ideal problem, in Algebra and its applications, Contemp. Math., Vol. 419, Amer. Math. Soc., Providence, RI, 2006, pp. 269–283.

    Chapter  Google Scholar 

  27. R. A. Rubin, Absolutely torsion-free rings, Pacific J. Math. 46 (1973), 503–514.

    Article  MathSciNet  MATH  Google Scholar 

  28. W. Stephenson, Modules whose lattice of submodules is distributive, Proc. London Math. Soc. (3) 28 (1974), 291–310.

    Article  MathSciNet  MATH  Google Scholar 

  29. A. A. Tuganbaev, Distributive rings, uniserial rings of fractions, and endo-Bezout modules, J. Math. Sci. (N. Y.) 114 (2003), 1185–1203, Algebra, 22.

    Article  MathSciNet  MATH  Google Scholar 

  30. P. Vámos, Finitely generated Artinian and distributive modules are cyclic, Bull. London Math. Soc. 10 (1978), 287–288.

    Article  MathSciNet  MATH  Google Scholar 

  31. H.-P. Yu, On quasi-duo rings, Glasgow Math. J. 37 (1995), 21–31.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg Marks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marks, G., Mazurek, R. Rings with linearly ordered right annihilators. Isr. J. Math. 216, 415–440 (2016). https://doi.org/10.1007/s11856-016-1415-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-016-1415-5

Navigation