Skip to main content
Log in

Sharp weak-type inequalities for Hilbert transform and Riesz projection

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

The paper is devoted to the study of the weak norms of the classical operators in the vector-valued setting.

  1. (i)

    Let S, H denote the singular integral involution operator and the Hilbert transform on \(L^p \left( {\mathbb{T}, \ell _\mathbb{C}^2 } \right)\), respectively. Then for 1 ≤ p ≤ 2 and any f,

    $$\left\| {\mathcal{S}f} \right\|_{p,\infty } \leqslant \left( {\frac{1} {\pi }\int_{ - \infty }^\infty {\frac{{\left| {\tfrac{2} {\pi }\log \left| t \right|} \right|^p }} {{t^2 + 1}}dt} } \right)^{ - 1/p} \left\| f \right\|p,$$
    $$\left\| {\mathcal{H}f} \right\|_{p,\infty } \leqslant \left( {\frac{1} {\pi }\int_{ - \infty }^\infty {\frac{{\left| {\tfrac{2} {\pi }\log \left| t \right|} \right|^p }} {{t^2 + 1}}dt} } \right)^{ - 1/p} \left\| f \right\|p.$$

    Both inequalities are sharp.

  2. (ii)

    Let P + and P stand for the Riesz projection and the co-analytic projection on \(L^p \left( {\mathbb{T}, \ell _\mathbb{C}^2 } \right)\), respectively. Then for 1 ≤ p ≤ 2 and any f,

    $$\left\| {P + f} \right\|_{p,\infty } \leqslant \left\| f \right\|_p ,$$
    $$\left\| {P - f} \right\|_{p,\infty } \leqslant \left\| f \right\|_p .$$

    Both inequalities are sharp.

  3. (iii)

    We establish the sharp versions of the estimates above in the nonperiodic case.

The results are new even if the operators act on complex-valued functions. The proof rests on the construction of an appropriate plurisubharmonic function and probabilistic techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Bañuelos and G. Wang, Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transformations, Duke Mathematical Journal 80 (1995), 575–600.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Bañuelos and G. Wang, Davis’s inequality for orthogonal martingales under differential subordination, The Michigan Mathematical Journal 47 (2000), 109–124.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. L. Burkholder, Boundary value problems and sharp inequalities for martingale transforms, The Annals of Probability 12 (1984), 647–702.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. L. Burkholder, A sharp and strict L p-inequality for stochastic integrals, The Annals of Probability 15 (1987), 268–273.

    Article  MathSciNet  MATH  Google Scholar 

  5. B. Davis, On the weak type (1, 1) inequality for conjugate functions, Proceedings of the American Mathematical Society 44 (1974), 307–311.

    MathSciNet  MATH  Google Scholar 

  6. C. Dellacherie and P.-A. Meyer, Probabilities and Potential B: Theory of Martingales, North-Holland, Amsterdam, 1982.

    MATH  Google Scholar 

  7. E. M. Essén, A superharmonic proof of the M. Riesz conjugate function theorem, Arkiv för Matematik 22 (1984), 241–249.

    Article  MATH  Google Scholar 

  8. T. W. Gamelin, Uniform Algebras and Jensen Measures, London Mathematical Society Lecture Notes Series, Vol. 32, Cambridge University Press, Cambridge-New York, 1978.

    Google Scholar 

  9. I. Gohberg and N. Krupnik, Norm of the Hilbert transformation in the L p space, Funct. Anal. Pril. 2 (1968), 91–92 (in Russian); English translation: Functional Analysis and its Applications 2 (1968), 180–181.

    Google Scholar 

  10. I. Gohberg and N. Krupnik, One-Dimensional Linear Singular Integral Equations, Vol. I. II. Operator Theory: Advances and Applications Vols. 53, 54, Birkhäuser, Basel, 1992.

    Book  Google Scholar 

  11. B. Hollenbeck and I. E. Verbitsky, Best constants for the Riesz projection, Journal of Functional Analysis 175 (2000), 370–392.

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Hollenbeck and I. E. Verbitsky, Best constant inequalities involving the analytic and co-analytic projections, Operator Theory: Advances and Applications Vol. 202, Birkhäuser, Basel, 2010, pp. 285–296.

    Google Scholar 

  13. P. Janakiraman, Best weak-type (p, p) constants, 1 ≤ p ≤ 2 for orthogonal harmonic functions and martingales, Illinois Journal of Mathematics 48 (2004), 909–921.

    MathSciNet  MATH  Google Scholar 

  14. A. Osękowski, Sharp weak type inequalities for differentially subordinated martingales, Bernoulli 15 (2009), 871–897.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Osękowski, Strong differential subordination and sharp inequalities for orthogonal processes, Journal of Theoretical Probability 22 (2009), 837–855.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Pelczyński, Norms of classical operators in function spaces, in Colloque en l’honneur de Laurent Schwartz, Vol. 1, Asterisque 131 (1985), 137–162.

    Google Scholar 

  17. S. K. Pichorides, On the best values of the constants in the theorems of M. Riesz, Zygmund and Kolmogorov, Studia Mathematica 44 (1972), 165–179.

    MathSciNet  MATH  Google Scholar 

  18. R. M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Graduate Texts in Mathematics Vol. 108, Springer-Verlag, New York, 1986.

    Google Scholar 

  19. B. Tomaszewski, Some sharp weak-type inequalities for holomorphic functions on the unit ball ofn, Proceedings of the American Mathematical Society 95 (1985), 271–274.

    MathSciNet  MATH  Google Scholar 

  20. I. E. Verbitsky, Estimate of the norm of a function in a Hardy space in terms of the norms of its real and imaginary part, Mat. Issled. 54 (1980), 16–20 (in Russian); English translation: American Mathematical Society Translations 124 (1984), 11–15.

    Google Scholar 

  21. G. Wang, Differential subordination and strong differential subordination for continuoustime martingales and related sharp inequalities, The Annals of Probability 23 (1995), 522–551.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Zygmund, Trigonometric Series, Vol. 2, Cambridge University Press, Cambridge, 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Osękowski.

Additional information

Partially supported by MNiSW Grant N N201 364436.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osękowski, A. Sharp weak-type inequalities for Hilbert transform and Riesz projection. Isr. J. Math. 192, 429–448 (2012). https://doi.org/10.1007/s11856-012-0067-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-012-0067-3

Keywords

Navigation