Skip to main content
Log in

Physical mathematics in number theory

  • Published:
Functional Analysis and Other Mathematics

Abstract

The paper is about the problem of carefully estimating the bounds, which is sometimes missing in the theoretical physics. Possible consequences of the missing of the bounds is discussed on example of the Riemann zeta function. The text of the paper is based on the drafts of A.A. Karatsuba’s lecture “Physical mathematics in number theory”, devoted to the 85th birthday of academician Vasilii Sergeevich Vladimirov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bays C, Hudson RH (2000) A new bound for the smallest x with π(x)>li(x). Math Comput 69(231):1285–1296

    MathSciNet  MATH  Google Scholar 

  2. Bogolubov NN, Shirkov DV (1984) Introduction to theory of quantized fields. Nauka, Moscow

    Google Scholar 

  3. Chassande-Mottin E, Pai A (2006) Best chirplet chain: Near-optimal detection of gravitational wave chirps. Physical Review D 73:042003, pp 1–23

    Article  Google Scholar 

  4. Dirac PAM (1934) Discussion of the infinite distribution of electrons in the theory of the positron. Proc Cambr Phil Soc 30:150–163

    Article  Google Scholar 

  5. Dirac PAM (1938-39) The Relation between Mathematics and Physics. Proc Roy Soc Edinburgh 59:122–129

    Google Scholar 

  6. Hardy GH, Littlewood JE (1921) The zeros of Riemann’s zeta-function on the critical line. Math Z 10:283

    Article  MathSciNet  Google Scholar 

  7. Ingham AE (1932) The distribution of prime numbers. Cambr Univ Press, Cambridge

    Google Scholar 

  8. Karatsuba AA (1987) Approximation of exponential sums by shorter ones. Proc Indian Acad Sci (Math Sci) 97:167–178

    Article  MathSciNet  MATH  Google Scholar 

  9. Karatsuba AA (2004) On the Riemann Asymptotic Formula for π(x). Dokl Math 69(3):423

    MATH  Google Scholar 

  10. Karatsuba AA (2004) On the approximations of π(x). Chebyshev’s transactions 5(4):5–20

    MathSciNet  MATH  Google Scholar 

  11. Karatsuba AA (2005) The behavior of the function R 1(x) and of its mean value. Dokl Akad Nauk 404(4):439–442

    MathSciNet  Google Scholar 

  12. Karatsuba AA (2005) On the number of the changes of sign of the function R 1(x) and of its mean values. Chebyshev’s transactions 6(2):163–183

    MathSciNet  MATH  Google Scholar 

  13. Karatsuba AA, Karatsuba EA (2009) Application of ATS in a quantum-optical model. In: Analysis and Mathematical Physics: Trends in Mathematics. Birkhäuser Publ, Basel, pp 211–232

    Chapter  Google Scholar 

  14. Karatsuba AA, Korolev MA (2007) A theorem on the approximation of a trigonometric sum by a shorter one. Izv Ross Akad Nauk. Ser Mat 71(2):123–150

    MathSciNet  Google Scholar 

  15. Karatsuba AA, Voronin SM (1992) The Riemann Zeta-Function. de Gruyter, Berlin

    Book  MATH  Google Scholar 

  16. Karatsuba EA (2004) Approximation of sums of oscillating summands in certain physical problems. J Math Phys 45(11):4310–4321

    Article  MathSciNet  MATH  Google Scholar 

  17. Karatsuba EA (2005) Approximation of exponential sums in the problem on the oscillator motion caused by pushes. Chebyshev’s transactions 6:205–224

    MathSciNet  MATH  Google Scholar 

  18. Karatsuba EA (2007) On an approach to the study of the Jaynes-Cummings sum in quantum optics. Numerical Algorithms 45:127–137

    Article  MathSciNet  Google Scholar 

  19. Karatsuba EA (2008) The Commutator Function of the Free Dirac Field in the Discrete Representation and its Zeros. Pacific Journal of Applied Mathematics 1(2):37–55

    MathSciNet  Google Scholar 

  20. Karatsuba EA (2008) Zeros and points of discontinuity of the commutator function of the free Dirac field. J Phys Conf Ser 128:012015. 1–11

    Article  Google Scholar 

  21. Lagarias J, Miller VS, Odlyzko A (1985) Computing π(x): the Meissel-Lehmer method. Math Comput 44:537–560

    MathSciNet  MATH  Google Scholar 

  22. Lehman RS (1966) On the difference π(x)−1i(x). Acta Arith 11:397–410

    MathSciNet  MATH  Google Scholar 

  23. Littlewood JE (1914) Sur la distribution des nobres premieres. Comptes Rendus 158:1869–1872

    Google Scholar 

  24. Montgomery HL (1994) Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis. Am Math Soc, Providence, RI

    MATH  Google Scholar 

  25. Riemann B (1859) Über die Anzahl der Primzahlen unter einer gegebenen Grösse. Monatsberichte der Berliner. Akademie, Berlin

    Google Scholar 

  26. Schiff LI (1955) Quantum Mechanics, 2nd edn. McGraw-Hill book comp, inc, New York

    MATH  Google Scholar 

  27. Scully MO, Zubairy MS (1997) Quantum Optics. Cambr Univ Press, Cambridge

    Google Scholar 

  28. Skewes S (1933) On the difference π(x)−Li(x). J London Math Soc 8:277–283

    Article  Google Scholar 

  29. Sloane NJA (2008) The On-Line Encyclopedia of Integer Sequences: A057752, A057794

  30. Te Riele HJJ (1987) On the difference π(x)−Li(x). Math Comput 48:323–328

    MATH  Google Scholar 

  31. Van der Corput JG (1922) Verscharfung der Abschatzung beim Teilerproblem. Math Ann 87:39–65

    Article  MathSciNet  Google Scholar 

  32. Vinogradov IM (1917) On the average value of the number of classes of purely root form of the negative determinant. Communic of Khar Math Soc 16:10–38

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekatherina A. Karatsuba.

Additional information

Anatolii A. Karatsuba (1937–2008)

Steklov Institute of Mathematics of RAS, Gubkina str., 8, Moscow, 119991, Russia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karatsuba, A.A., Karatsuba, E.A. Physical mathematics in number theory. Funct. Anal. Other Math. 3, 113–125 (2011). https://doi.org/10.1007/s11853-010-0044-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11853-010-0044-5

Keywords

Mathematics Subject Classification (2000)

Navigation