Skip to main content
Log in

Spatial Strain Sensing Using Embedded Fiber Optics

  • Additive Manufacturing of Composites and Complex Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Ultrasonic additive manufacturing, a three-dimensional metal printing technology, uses ultrasonic energy to produce metallurgical bonds between layers of metal foils near room temperature. This low-temperature attribute of the process enables integration of temperature-sensitive components, such as fiber optic strain sensors, directly into metal structures for load and health monitoring applications. In this study, a high-definition fiber optic strain sensor was embedded into an aluminum alloy, 6061-T6, bracket for fatigue testing. The fiber optic system allowed mapping of the strain along the length of the fiber with a spatial resolution near 1 mm, and the embedded fiber exhibited correlation with surface strains measured by digital image correlation. Finite element modeling was carried out to rationalize and compare the measured strain profile’s character and magnitude. After discussing these results, a future outlook on the technology and its applications is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E. Tuegel, A. Ingraffea, T. Eason and S. Spottswood, Int. J. Aerosp. Eng. (2011).

  2. G.W. Hunter, D.E. Berger, J.D. Lekki, R.W. Mah, D.F. Perey, S.R. Schuet, D.L. Simon and S.W. Smith, Report No. 217825, NASA, Cleveland, OH (2013).

  3. E.H. Glaessgen and D. Stargel, Proc.—AIAA/ASME/SAE Struct., Struct. Dyn., Mater. Conf. (2012).

  4. M. Grieves and J. Vickers, Transdisciplinary Perspective on Complex Systems, 1st ed. (Springer, 2017), pp. 85–113.

  5. C.J. Parris, J. Laflen, M. Grabb and D. Kalitan, The future for industrial services: the digital twin, https://www.infosys.com/insights/digital-future/Pages/future-industrial-digital.aspx. Accessed 22 Aug 2017.

  6. Siemens, The digital twin, https://www.siemens.com/customer-magazine/en/home/industry.html. Accessed 2 Oct 2017.

  7. B. Marr, Forbes (2017).

  8. D. Huston, Structural Sensing, Health Monitoring, and Performance Evaluation, 1st ed. (Boca Raton: CRC Press, 2011), pp. 5–15.

    Google Scholar 

  9. R. Measures, Prog. Aeronut. Sci. 26, 289 (1989).

    Article  Google Scholar 

  10. K. Kuang and W. Cantwell, Appl. Mech. Rev. 56, 493 (2003).

    Article  Google Scholar 

  11. N. Saheb and S. Mekid, Materials 8, 7938 (2015).

    Article  Google Scholar 

  12. S. Mekid, A. Butt, and K. Qureshi, Opt. Fiber Technol. 36, 334 (2017).

    Article  Google Scholar 

  13. D. Havermann, J. Mathew, W.N. MacPherson, D.P. Hand and R.R. Maier, Proc. SPIE (2015).

  14. D. Havermann, J. Mathew, W. MacPherson, R. Maier, and D. Hand, J. Lightwave Technol. 33, 2474 (2015).

    Article  Google Scholar 

  15. C. Mou, P. Saffari, D. Li, K. Zhou, L. Zhang, R. Soar and I. Bennion, Meas. Sci. Technol. 20 (2009).

  16. J. Schomer, A. Hehr and M. Dapino, Proc. SPIE (2016).

  17. A. Hehr, M. Norfolk, J. Wenning, J. Sheridan, P. Leser, P. Leser, and J. Newman, JOM 70, 315 (2017).

    Article  Google Scholar 

  18. S. Mekid and H. Daraghma, J. Mater. Process. Technol. 252, 673 (2018).

    Article  Google Scholar 

  19. D. White, Adv. Mater. Process. 161, 64 (2003).

    Google Scholar 

  20. K. Graff, J. Devine, J. Keltos, N. Zhou and W. Roth, AWS Welding Handbook (2001), p. 263.

  21. M. Sriraman, M. Gonser, H. Fujii, S. Babu, and M. Bloss, J. Mater. Process. Technol. 211, 1650 (2011).

    Article  Google Scholar 

  22. J. Sietins, J. Gillespie, and S. Advani, J. Mater. Res. 29, 1970 (2014).

    Article  Google Scholar 

  23. B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, Opt. Express 13, 666 (2005).

    Article  Google Scholar 

  24. G. Bomarito, J. Hochhalter, T. Ruggles, and A. Cannon, Optics Lasers Eng. 91, 73 (2017).

    Article  Google Scholar 

  25. G. Bomarito, J. Hochhalter and T. Ruggles, Exp. Mech. 1 (2017).

  26. J. Warner, G. Bomarito, J. Hochhalter, W. Leser, P. Leser and J. Newman, Int. J. Prognost. Health Manag. 8 (2017).

Download references

Acknowledgements

The authors would like to acknowledge financial support from NASA’s SBIR Office, NNX16CL33C. The authors are grateful for the support of NASA’s Convergent Aeronautics Solutions (CAS) Program Digital Twin Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Hehr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hehr, A., Norfolk, M., Sheridan, J. et al. Spatial Strain Sensing Using Embedded Fiber Optics. JOM 71, 1528–1534 (2019). https://doi.org/10.1007/s11837-018-3297-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3297-y

Navigation