Skip to main content

Advertisement

Log in

Mg2Si-Based Materials for the Thermoelectric Energy Conversion

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Thermoelectric materials are capable of converting a temperature gradient into electricity (thermoelectric power generation) and vice versa (Peltier cooling). The thermoelectric power generation has been used for decades in spacecraft, where radioactive decay provides the heat source. Additional applications under consideration are based on the utilization of waste heat, for example in automotives or the manufacturing industries. Commercial thermoelectric materials are normally based on Bi2Te3, PbTe, or possibly in the future on the so-called filled skutterudites, such as YbxCo4Sb12. The downside of these materials is that some of their major constituent elements are toxic, namely tellurium, lead, and antimony, and in part rare and expensive (ytterbium, tellurium). Mg2Si on the other hand is composed of abundant, environmentally benign elements, and thus offers a huge advantage for commercial applications. Here, we provide a review of Mg2Si-based materials for thermoelectric energy conversion, discussing how competitive these materials have become in comparison to the above-mentioned more traditional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H.-S. Choi, S. Yun, and K. Whang, Appl. Therm. Eng. 27, 2841 (2007).

    Article  Google Scholar 

  2. R.R. Furlong and E.J. Wahlquist, Nucl. News 42, 26 (1999).

    Google Scholar 

  3. J. Yang and T. Caillat, MRS Bull. 31, 224 (2006).

    Article  Google Scholar 

  4. L.E. Bell, Science 321, 1457 (2008).

    Article  Google Scholar 

  5. M. Matsumoto, M. Mori, T. Haraguchi, M. Ohtani, T. Kubo, K. Matsumoto, and H. Matsuda, SAE Int. J. Eng. 8, 1815 (2015).

    Google Scholar 

  6. D.M. Rowe, Thermoelectrics Handbook: Macro to Nano (Boca Raton: CRC Press, Taylor & Francis Group, 2006).

    Google Scholar 

  7. M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, and G. Chen, Energy Environ. Sci. 5, 5147 (2012).

    Article  Google Scholar 

  8. J.O. Sofo and G.D. Mahan, Phys. Rev. B 49, 4565 (1994).

    Article  Google Scholar 

  9. H. Kleinke, Chem. Mater. 22, 604 (2010).

    Article  Google Scholar 

  10. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  11. E.S. Toberer, A.F. May, and G.J. Snyder, Chem. Mater. 22, 624 (2010).

    Article  Google Scholar 

  12. T.C. Harman, B. Paris, S.E. Miller, and H.L. Goering, J. Phys. Chem. Solids 2, 181 (1957).

    Article  Google Scholar 

  13. Y. Gelbstein, Z. Dashevsky, and M.P. Dariel, Phys. B 363, 196 (2005).

    Article  Google Scholar 

  14. W. Xie, S. Wang, S. Zhu, J. He, X. Tang, Q. Zhang, and T.M. Tritt, J. Mater. Sci. 48, 2745 (2013).

    Article  Google Scholar 

  15. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).

    Article  Google Scholar 

  16. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard III, and J.R. Heath, Nature 451, 168 (2008).

    Article  Google Scholar 

  17. H.Y. Lv, H.J. Liu, J. Shi, X.F. Tang, and C. Uher, J. Mater. Chem. A 1, 6831 (2013).

    Article  Google Scholar 

  18. F. Wu, H. Song, F. Gao, W. Shi, J. Jia, and X. Hu, J. Electron. Mater. 42, 1140 (2013).

    Article  Google Scholar 

  19. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008).

    Article  Google Scholar 

  20. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G.J. Snyder, Nature 473, 66 (2011).

    Article  Google Scholar 

  21. P.F.P. Poudeu, J. D’Angelo, A.D. Downey, J.L. Short, T.P. Hogan, and M.G. Kanatzidis, Angew. Chem. Int. Ed. 45, 3835 (2006).

    Article  Google Scholar 

  22. J. Androulakis, K.F. Hsu, R. Pcionek, H. Kong, C. Uher, J.J. D’Angelo, A. Downey, T. Hogan, and M.G. Kanatzidis, Adv. Mater. 18, 1170 (2006).

    Article  Google Scholar 

  23. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).

    Article  Google Scholar 

  24. K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).

    Article  Google Scholar 

  25. X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, and L. Chen, J. Am. Chem. Soc. 133, 7837 (2011).

    Article  Google Scholar 

  26. X. Shi, J. Yang, S. Bai, J. Yang, H. Wang, M. Chi, J.R. Salvador, W. Zhang, L. Chen, and W. Wong-Ng, Adv. Funct. Mater. 20, 755 (2010).

    Article  Google Scholar 

  27. V.L. Kuznetsov, L.A. Kuznetsova, A.E. Kaliazin, and D.M. Rowe, J. Appl. Phys. 87, 7871 (2000).

    Article  Google Scholar 

  28. R. Nesper, Prog. Solid State Chem. 20, 1 (1990).

    Article  Google Scholar 

  29. H. Xu, K.M. Kleinke, T. Holgate, H. Zhang, Z. Su, T.M. Tritt, and H. Kleinke, J. Appl. Phys. 105, 053703 (2009).

    Article  Google Scholar 

  30. A. Zevalkink, W.G. Zeier, G. Pomrehn, E. Schechtel, W. Tremel, and G.J. Snyder, Energy Environ. Sci. 5, 9121 (2012).

    Article  Google Scholar 

  31. E.S. Toberer, S.R. Brown, T. Ikeda, S.M. Kauzlarich, and G.J. Snyder, Appl. Phys. Lett. 93, 062110 (2008).

    Article  Google Scholar 

  32. E.S. Toberer, C.A. Cox, S.R. Brown, T. Ikeda, A.F. May, S.M. Kauzlarich, and G.J. Snyder, Adv. Funct. Mater. 18, 2795 (2008).

    Article  Google Scholar 

  33. T. Caillat, J.-P. Fleurial, and A. Borshchevsky, J. Phys. Chem. Solids 58, 1119 (1997).

    Article  Google Scholar 

  34. K. Kurosaki and S. Yamanaka, Phys. Status Solidi 210, 82 (2013).

    Article  Google Scholar 

  35. Q. Guo, M. Chan, B.A. Kuropatwa, and H. Kleinke, Chem. Mater. 25, 4097 (2013).

    Article  Google Scholar 

  36. K. Kurosaki, A. Kosuga, H. Muta, M. Uno, and S. Yamanaka, Appl. Phys. Lett. 87, 061919 (2005).

    Article  Google Scholar 

  37. B. Wölfing, C. Kloc, J. Teubner, and E. Bucher, Phys. Rev. Lett. 86, 4350 (2001).

    Article  Google Scholar 

  38. Q. Guo, A. Assoud, and H. Kleinke, Adv. Energy Mater. 4, 1400348 (2014).

    Article  Google Scholar 

  39. S. LeBlanc, S.K. Yee, M.L. Scullin, C. Dames, and K.E. Goodson, Renew. Sustain. Energy Rev. 32, 313 (2014).

    Article  Google Scholar 

  40. T. Ikeda, L. Haviez, Y. Li, and G.J. Snyder, Small 8, 2350 (2012).

    Article  Google Scholar 

  41. M. Yoshinaga, T. Iida, M. Noda, T. Endo, and Y. Takanashi, Thin Solid Films 461, 86 (2004).

    Article  Google Scholar 

  42. Y. Maeda, K.P. Homewood, T. Sadoh, Y. Terai, K. Yamaguchi, K. Akiyama, M. Akasaka, T. Iida, K. Nishio, and Y. Takanashi, Thin Solid Films 515, 8237 (2007).

    Article  Google Scholar 

  43. H. Gao, T. Zhu, X. Liu, L. Chen, and X. Zhao, J. Mater. Chem. 21, 5933 (2011).

    Article  Google Scholar 

  44. D. Berthebaud and F. Gascoin, J. Solid State Chem. 202, 61 (2013).

    Article  Google Scholar 

  45. G. Fu, L. Zuo, J. Longtin, C. Nie, and R. Gambino, J. Appl. Phys. 114, 144905 (2013).

    Article  Google Scholar 

  46. H. Itahara, T. Yamada, S.-Y. Oh, R. Asahi, H. Imagawa, and H. Yamane, Chem. Commun. 50, 4315 (2014).

    Article  Google Scholar 

  47. R. Nakagawa, H. Katsumata, S. Hashimoto, and S. Sakuragi, Jpn. J. Appl. Phys. 54, 085503 (2015).

    Article  Google Scholar 

  48. Q. Zhang, X. Su, Y. Yan, H. Xie, T. Liang, Y. You, X. Tang, and C. Uher, ACS Appl. Mater. Interfaces 8, 3268 (2016).

    Article  Google Scholar 

  49. X. Su, F. Fu, Y. Yan, G. Zheng, T. Liang, Q. Zhang, X. Cheng, D. Yang, H. Chi, X. Tang, Q. Zhang, and C. Uher, Nat. Commun. 5, 4908 (2014).

    Article  Google Scholar 

  50. D. Wood and A. Zunger, Phys. Rev. B 34, 4105 (1986).

    Article  Google Scholar 

  51. M. Kubouchi, K. Hayashi, and Y. Miyazaki, J. Alloys Compd. 617, 389 (2014).

    Article  Google Scholar 

  52. Z. Du, T. Zhu, Y. Chen, J. He, H. Gao, G. Jiang, T.M. Tritt, and X. Zhao, J. Mater. Chem. 22, 6838 (2012).

    Article  Google Scholar 

  53. O.O. Kurakevych, T.A. Strobel, D.Y. Kim, and G.D. Cody, Angew. Chem. Int. Ed. 52, 8930 (2013).

    Article  Google Scholar 

  54. O. Madelung, U. Rössler, M. Schulz (eds.), Non-Tetrahedrally Bonded Elements and Binary Compounds I, Landolt-Börnstein—Group III Condensed Matter, Vol. 41C (Berlin: Springer, 1998)

  55. U. Winkler, Helv. Phys. Acta 28, 633 (1955).

    Google Scholar 

  56. D. Cederkrantz, N. Farahi, K.A. Borup, B.B. Iversen, M. Nygren, and A.E.C. Palmqvist, J. Appl. Phys. 111, 023701 (2012).

    Article  Google Scholar 

  57. V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov, Phys. Rev. B 74, 045207 (2006).

    Article  Google Scholar 

  58. N. Farahi, S. Prabhudev, G. Botton, J. Zhao, J.S. Tse, Z. Liu, J.R. Salvador, and H. Kleinke, J. Alloys Compd. 644, 249 (2015).

    Article  Google Scholar 

  59. L. Chen, G. Jiang, Y. Chen, Z. Du, X. Zhao, T. Zhu, J. He, and T.M. Tritt, J. Mater. Res. 26, 3038 (2011).

    Article  Google Scholar 

  60. E.N. Nikitin, V.G. Bazanov, and V.I. Tarasov, Sov. Phys. Solid State 3, 2648 (1961).

    Google Scholar 

  61. J.-W. Liu, M. Song, M. Takeguchi, N. Tsujii, and Y. Isoda, J. Electron. Mater. 44, 407 (2015).

    Article  Google Scholar 

  62. N. Farahi, M. VanZant, J. Zhao, J.S. Tse, S. Prabhudev, G. Botton, J.R. Salvador, F. Borondics, Z. Liu, and H. Kleinke, Dalton Trans. 43, 14983 (2014).

    Article  Google Scholar 

  63. A. Kolezynski, P. Nieroda, P. Jelen, M. Sitarz, and K.T. Wojciechowski, Vib. Spectrosc. 76, 31 (2015).

    Article  Google Scholar 

  64. S.K. Bux, M.T. Yeung, E.S. Toberer, G.J. Snyder, R.B. Kaner, and J.-P. Fleurial, J. Mater. Chem. 21, 12259 (2011).

    Article  Google Scholar 

  65. X. Zhang, H. Liu, Q. Lu, J. Zhang, and F. Zhang, Appl. Phys. Lett. 103, 063901 (2013).

    Article  Google Scholar 

  66. W. Liu, Q. Zhang, K. Yin, H. Chi, X. Zhou, X. Tang, and C. Uher, J. Solid State Chem. 203, 333 (2013).

    Article  Google Scholar 

  67. W. Liu, X. Tang, H. Li, and J. Sharp, Chem. Mater. 23, 5256 (2011).

    Article  Google Scholar 

  68. W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang, and C. Uher, Phys. Rev. Lett. 108, 166601 (2012).

    Article  Google Scholar 

  69. H. Ning, G.D. Mastrorillo, S. Grasso, B. Du, T. Mori, C. Hu, Y. Xu, K. Simpson, G. Maizza, and M. Reece, J. Mater. Chem. A 3, 17426 (2015).

    Article  Google Scholar 

  70. Q. Zhang, J. He, T.J. Zhu, S.N. Zhang, X.B. Zhao, and T.M. Tritt, Appl. Phys. Lett. 93, 102109 (2008).

    Article  Google Scholar 

  71. A.U. Khan, N. Vlachos, and T. Kyratsi, Scr. Mater. 69, 606 (2013).

    Article  Google Scholar 

  72. W. Liu, K. Yin, X. Su, H. Li, Y. Yan, X. Tang, and C. Uher, Intermetallics 32, 352 (2013).

    Article  Google Scholar 

  73. H. Ihou-Mouko, C. Mercier, J. Tobola, G. Pont, and H. Scherrer, J. Alloys Compd. 509, 6503 (2011).

    Article  Google Scholar 

  74. Q. Zhang, L. Cheng, W. Liu, Y. Zheng, X. Su, H. Chi, H. Liu, Y. Yan, X. Tang, and C. Uher, Phys. Chem. Chem. Phys. 16, 23576 (2014).

    Article  Google Scholar 

  75. X. Tang, G. Wang, Y. Zheng, Y. Zhang, K. Peng, L. Guo, S. Wang, M. Zeng, J. Dai, G. Wang, and X. Zhou, Scr. Mater. 115, 52 (2016).

    Article  Google Scholar 

  76. P. Gao, J.D. Davis, V.V. Poltavets, and T.P. Hogan, J. Mater. Chem. C 4, 929 (2016).

    Article  Google Scholar 

  77. Y. Sadia and Y. Gelbstein, J. Electron. Mater. 41, 1504 (2012).

    Article  Google Scholar 

  78. W. Luo, H. Li, Y. Yan, Z. Lin, X. Tang, Q. Zhang, and C. Uher, Intermetallics 19, 404 (2011).

    Article  Google Scholar 

  79. M. Yoshikura and T. Itoh, J. Jpn. Soc. Powder Powder Metall. 57, 242 (2010).

    Article  Google Scholar 

  80. M. Umemoto, Z.G. Liu, R. Omatsuzawa, and K. Tsuchiya, J. Metastable Nanocryst. Mater. 8, 918 (2000).

    Article  Google Scholar 

  81. M. Zebarjadi, K. Esfarjani, A. Shakouri, J.-H. Bahk, Z. Bian, G. Zeng, J. Bowers, H. Lu, J. Zide, and A. Gossard, Appl. Phys. Lett. 94, 202105 (2009).

    Article  Google Scholar 

  82. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.-P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).

    Article  Google Scholar 

  83. S.V. Faleev and F. Léonard, Phys. Rev. B 77, 214304 (2008).

    Article  Google Scholar 

  84. S. Fiameni, S. Battiston, S. Boldrini, A. Famengo, F. Agresti, S. Barison, and M. Fabrizio, J. Solid State Chem. 193, 142 (2012).

    Article  Google Scholar 

  85. T. Yi, S. Chen, S. Li, H. Yang, S. Bux, Z. Bian, N.A. Katcho, A. Shakouri, N. Mingo, J.-P. Fleurial, N.D. Browning, and S.M. Kauzlarich, J. Mater. Chem. 22, 24805 (2012).

    Article  Google Scholar 

  86. N. Farahi, S. Prabhudev, M. Bugnet, G. Botton, J. Zhao, J.S. Tse, J.R. Salvador, and H. Kleinke, RSC Adv. 5, 65328 (2015).

    Article  Google Scholar 

  87. A.S. Tazebay, S.-I. Yi, J.K. Lee, H. Kim, J.-H. Bahk, S.L. Kim, S.-D. Park, H.S. Lee, A. Shakouri, and C. Yu, ACS Appl. Mater. Interfaces 8, 7003 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the Natural Sciences and Engineering Research Council is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Kleinke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Farahi, N. & Kleinke, H. Mg2Si-Based Materials for the Thermoelectric Energy Conversion. JOM 68, 2680–2687 (2016). https://doi.org/10.1007/s11837-016-2060-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2060-5

Keywords

Navigation