Skip to main content
Log in

Dislocation Nucleation in Nickel-Graphene Nanocomposites Under Mode I Loading

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Graphene has superior mechanical properties, and previous studies have shown that it can be used as a fiber laminate in metal-graphene nanocomposites. Our research outlines the advantages and disadvantages of different Ni-graphene nanocomposite laminates. Using molecular dynamics, Ni-graphene nanocomposites are studied under mode I loading normal to the graphene laminate plane. The stress intensity factor (\(K_{\text{I}}\)) is predicted for the nanocomposite at varying distances between a simulated crack and the graphene sheet(s) in the Ni-matrix. We find that \(K_{\text{I}}\) of the Ni-matrix is reduced with the addition of graphene sheet. However, for a single graphene sheet in the Ni-matrix, \(K_{\text{I}}\) increases with increased spacing between the crack and the graphene sheet. This is due to the change in the crack-generated stress field in the region between the Ni-matrix containing the crack and the graphene sheet, which leads to the lower stress values at which dislocation nucleation occurs compared to single-crystal Ni. For multiple layers of graphene sheets in the Ni-matrix, we find that failure occurs exclusively by delamination at a lower stress than the one-layer case. This research concludes that fabricated Ni-graphene nanocomposites can be tuned for optimal fracture strength by the structural arrangement of graphene sheets within the Ni-matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).

    Article  Google Scholar 

  2. Y. Kim, J. Lee, M.S. Yeom, J.W. Shin, H. Kim, Y. Cui, J.W. Kysar, J. Hone, Y. Jung, S. Jeon, and S.M. Han, Nat. Commun. 4, 2114 (2013).

    Google Scholar 

  3. I.A. Ovid’ko, Rev. Adv. Mater. Sci. 38, 190 (2014).

    Google Scholar 

  4. Y. Hernandez, Nat. Nanotechnol. 3, 563 (2008).

    Article  Google Scholar 

  5. P. Blake, Nano Lett. 8, 1704 (2008).

    Article  Google Scholar 

  6. H.C. Schniepp, J. Phys. Chem. B 110, 8535 (2006).

    Article  Google Scholar 

  7. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, and R.S. Ruoff, Science 324, 1312 (2009).

    Article  Google Scholar 

  8. S. Bae, Nat. Nanotechnol. 5, 574 (2010).

    Article  Google Scholar 

  9. S.W. Chang, A.K. Nair, and M.J. Buehler, Philos. Magn. Lett. 93, 196 (2013).

    Article  Google Scholar 

  10. A.K. Geim, Science 324, 1530 (2009).

    Article  Google Scholar 

  11. A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  Google Scholar 

  12. Z.P. Xu and M.J. Buehler, J. Phys. 22, 485301 (2010).

    Google Scholar 

  13. M. Fuentes-Cabrera, M.I. Baskes, A.V. Melechko, and M.L. Simpson, Phys. Rev. B 77, 035405 (2008).

    Article  Google Scholar 

  14. C.H. Ersland, I.R. Vatne, and C. Thaulow, Model. Simul. Mater. Sci. 20, 075004 (2012).

    Article  Google Scholar 

  15. M.S. Daw and M.I. Baskes, Phys. Rev. Lett. 50, 1285 (1983).

    Article  Google Scholar 

  16. S.J. Stuart, A.B. Tutein, and J.A. Harrison, J. Chem. Phys. 112, 6472 (2000).

    Article  Google Scholar 

  17. L. Bardotti, P. Jensen, A. Hoareau, M. Treilleux, and B. Cabaud, Phys. Rev. Lett. 74, 4694 (1995).

    Article  Google Scholar 

  18. S.P. Huang, D.S. Mainardi, and P.B. Balbuena, Surf. Sci. 545, 163 (2003).

    Article  Google Scholar 

  19. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  Google Scholar 

  20. A.P. Thompson, S.J. Plimpton, and W. Mattson, J. Chem. Phys. 131, 154107 (2009).

    Article  Google Scholar 

  21. Z. Qin and M.J. Buehler, J. Phys. D 45, 445302 (2012).

    Article  Google Scholar 

  22. A. Stukowski, Model. Simul. Mater. Sci. 18, 015012 (2010).

    Article  Google Scholar 

  23. S.W. Chang, A.K. Nair, and M.J. Buehler, J. Phys. Condens. Matter 24, 245301 (2012).

    Article  Google Scholar 

  24. R.J. Young, I.A. Kinloch, L. Gong, and K.S. Novoselov, Compos. Sci. Technol. 72, 1459 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

A.K.N. and S.E.M. acknowledge support from the Arkansas Economic Development Commission (#16-EPS3-0001). This work was supported in part by the National Science Foundation, under Grants ARI#0963249, MRI#0959124, and EPS#0918970, and by a Grant from the Arkansas Science and Technology Authority, managed by the Arkansas High Performance Computing Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun K. Nair.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muller, S.E., Nair, A.K. Dislocation Nucleation in Nickel-Graphene Nanocomposites Under Mode I Loading. JOM 68, 1909–1914 (2016). https://doi.org/10.1007/s11837-016-1941-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-1941-y

Keywords

Navigation