Skip to main content

Advertisement

Log in

Synthesis, Characterization, In Vitro Bioactivity and Biocompatibility Evaluation of Hydroxyapatite/Bredigite (Ca7MgSi4O16) Composite Nanoparticles

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Silicate-based bioceramics have been found to possess excellent apatite-forming ability, and they can stimulate cell proliferation and osteogenic differentiation. In this study, bredigite (Ca7MgSi4O16) nanoparticles were synthesized and incorporated into a hydroxyapatite (HA)-based matrix to produce composite nanoparticles with improved bioactivity and biocompatibility. HA/bredigite nanoparticles containing 25% and 50% bredigite were synthesized by using the sol–gel method. X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy-dispersive x-ray spectroscopy, and Fourier transform infrared techniques were used to study the phase structure, morphology, and structural properties of prepared nanoparticles. Results indicated that HA/bredigite nanoparticles with an average particle size of less than 50 nm and homogeneous distribution of bredigite were successfully synthesized. Obtained results also revealed that the presence of bredigite led to a small increase in HA lattice parameters and to a decrease in the agglomeration of composite nanoparticles. The in vitro bioactivity studies performed in the simulated body fluid showed that composite nanoparticles had higher apatite-forming ability than pure HA. The results of a cell proliferation assay revealed that the proliferation of mesenchymal stem cells in the extract of HA/bredigite was significantly higher than those in the extract of the initial HA and control group after 72 h. As the properties of HA/bredigite nanoparticles were highly improved, compared with pure HA, it is concluded that these composite nanoparticles could potentially be good candidates for use as effective bioactive materials in bone regeneration applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Li, X. Liao, L. Zheng, X. Zhu, Z. Wang, H. Fan, and X. Zhang, Acta Biomater. 8, 3794 (2012).

    Article  Google Scholar 

  2. L.H. Leung and H.E. Naguib, Polym. Eng. Sci. 52, 1649 (2012).

    Article  Google Scholar 

  3. M. Kouhi, M. Morshed, J. Varshosaz, and M.H. Fathi, Chem. Eng. J. 228, 1057 (2013).

    Article  Google Scholar 

  4. C.P. Yoganand, V. Selvarajan, V. Cannillo, A. Sola, E. Roumeli, O.M. Goudouri, K.M. Paraskevopolous, and M. Rouabhia, Ceram. Int. 36, 1757 (2010).

    Article  Google Scholar 

  5. H. Zhou and J. Lee, Acta Biomater. 7, 2769 (2011).

    Article  Google Scholar 

  6. S.V. Dorozhkin, Biomaterials 31, 1465 (2010).

    Article  Google Scholar 

  7. F. Barrère, C.A. Van Blitterswijk, and K. de Groot, Int. J. Nanomed. 1, 317 (2006).

    Google Scholar 

  8. W.L. Suchanek, K. Byrappa, P. Shuk, R.E. Riman, V.F. Janas, and K.S. TenHuisen, Biomaterials 25, 4647 (2004).

    Article  Google Scholar 

  9. S.K. Padmanabhan, F. Gervaso, M. Carrozzo, F. Scalera, A. Sannino, and A. Licciulli, Ceram. Int. 39, 619 (2013).

    Article  Google Scholar 

  10. T. Ahmadi, A. Monshi, V. Mortazavi, M.H. Fathi, S. Sharifi, B.H. Beni, A. Moghareabed, M. Kheradmandfar, and A. Sharifnabi, Ceram. Int. 40, 8341 (2014).

    Article  Google Scholar 

  11. H. Ghomi, M.H. Fathi, and H. Edris, Mater. Res. Bull. 47, 3523 (2012).

    Article  Google Scholar 

  12. K. Lin, J. Chang, X. Liu, and C. Ning, Int. J. Appl. Ceram. Technol. 7, 178 (2010).

    Article  Google Scholar 

  13. E. Landi, G. Logroscino, L. Proietti, A. Tampieri, M. Sandri, and S. Sprio, J. Mater. Sci. Mater. Med. 19, 239 (2008).

    Article  Google Scholar 

  14. I.M. Martínez, L. Meseguer-Olmo, A. Bernabeu-Esclapez, P.A. Velásquez, and P.N. De Aza, Mater. Charact. 63, 47 (2012).

    Article  Google Scholar 

  15. T. Kokubo, H. Kushitani, C. Ohtsuki, S. Sakka, and T. Yamamuro, J. Mater. Sci. Mater. Med. 4, 1 (1993).

    Article  Google Scholar 

  16. P. Valerio, M.M. Pereira, A.M. Goes, and M.F. Leite, Biomaterials 25, 2941 (2004).

    Article  Google Scholar 

  17. C. Ohtsuki, T. Kokubo, and T. Yamamuro, J. Non Cryst. Solids 143, 84 (1999).

    Article  Google Scholar 

  18. C.C. Liu, J.K. Yeh, and J.F. Aloia, J. Bone Miner. Res. 3, 104 (1998).

    Google Scholar 

  19. W. Zhai, H. Lu, C. Wu, L. Chen, X. Lin, K. Naoki, G. Chen, and J. Chang, Acta Biomater. 9, 8004 (2013).

    Article  Google Scholar 

  20. C. Wu and J. Chang, J. Biomed. Mater. Res. B 83, 153 (2007).

    Article  Google Scholar 

  21. C. Wu, J. Chang, S. Ni, and J. Wang, J. Biomed. Mater. Res. A 76, 73 (2006).

    Article  Google Scholar 

  22. C. Wu, J. Chang, J. Wang, S. Ni, and W. Zhai, Biomaterials 26, 2925 (2005).

    Article  Google Scholar 

  23. R.Z. Domingues, A.E. Clark, and A.B. Brennan, J. Biomed. Mater. Res. 55, 468 (2001).

    Article  Google Scholar 

  24. M.H. Fathi, A. Hanifi, and V. Mortazavi, J. Mater. Process. Technol. 202, 536 (2008).

    Article  Google Scholar 

  25. B.D. Cullity, Elements of X-ray Diffraction, 2nd ed. (Boston: Addison-Wesley, 1978), p. 100.

    Google Scholar 

  26. T. Kokubo and H. Takadama, Biomaterials 27, 2907 (2006).

    Article  Google Scholar 

  27. ISO10993-5, Biological Evaluation of Medical Devices, Part 5: Test for In Vitro Cytotoxicity (2009).

  28. S.R. Kim, J.H. Lee, Y.T. Kim, D.H. Riu, S.J. Jung, Y.J. Lee, S.C. Chung, and Y.H. Kim, Biomaterials 24, 1389 (2003).

    Article  Google Scholar 

  29. A.I. Villacampa and J.M. García-Ruiz, J. Cryst. Growth. 211, 111 (2000).

    Article  Google Scholar 

  30. M. Taherian, R. Rojaee, M. Fathi, and M. Tamizifar, J. Adv. Ceram. 3, 207 (2014).

    Article  Google Scholar 

  31. C. Wu and J. Chang, J. Biomater. Appl. 21, 251 (2007).

    Article  Google Scholar 

  32. M.H. Fathi and A. Hanifi, Adv. Appl. Ceram. 108, 363 (2009).

    Article  Google Scholar 

  33. D.S. Brauer, N. Karpukhina, M.D. O’Donnell, R.V. Law, and R.G. Hill, Acta Biomater. 6, 3275 (2010).

    Article  Google Scholar 

  34. D.L. Trandafir, O. Ponta, R. Ciceo-Lucacel, and V. Simon, J. Mol. Struct. 1080, 111 (2015).

    Article  Google Scholar 

  35. S.M. Mirhadi, F. Tavangarian, and R. Emadi, Mater. Sci. Eng. C 32, 133 (2012).

    Article  Google Scholar 

  36. T.J. Webster, R.W. Siegel, and R. Bizios, Biomaterials 20, 1221 (1999).

    Article  Google Scholar 

  37. P.J. Goodhew and J. Humpher, Electron Microscopy and Analysis, 3rd ed. (New York: Taylor and Francis, 2001), p. 180.

    Google Scholar 

  38. L.L. Hench, J. Am. Ceram. Soc. 81, 1705 (1998).

    Article  Google Scholar 

  39. L.L. Hench, N. Roki, and M.B. Fenn, J. Mol. Struct. 1073, 24 (2014).

    Article  Google Scholar 

  40. R. Pignatello, Biomaterials Applications for Nanomedicine (Rijeka: InTech, 2011), p. 69.

    Book  Google Scholar 

  41. M.G. Gandolfi, P. Taddei, E. Modena, F. Siboni, and C. Prati, J. Biomed. Mater. Res. B 101, 1107 (2013).

    Article  Google Scholar 

  42. T. Mosmann, J. Immunol. Methods 65, 55 (1983).

    Article  Google Scholar 

  43. J. Junfeng, Z. Huanjun, W. Jie, J. Xin, H. Hong, C. Fangping, W. Shicheng, S. Jung-Woog, L. Changsheng, and J.R. Soc, Interface. 7, 1171 (2010).

    Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to the Isfahan University of Technology for financial support. This project was also supported by the Department of Tissue Engineering and Regenerative Medicine of Iran University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monireh Kouhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kouhi, M., Shamanian, M., Fathi, M. et al. Synthesis, Characterization, In Vitro Bioactivity and Biocompatibility Evaluation of Hydroxyapatite/Bredigite (Ca7MgSi4O16) Composite Nanoparticles. JOM 68, 1061–1070 (2016). https://doi.org/10.1007/s11837-016-1815-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-1815-3

Keywords

Navigation