Skip to main content
Log in

Rapid Detection of Pathogenic Bacteria from Fresh Produce by Filtration and Surface-Enhanced Raman Spectroscopy

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The detection of Salmonella Poona from cantaloupe cubes and E. coli O157:H7 from lettuce has been explored by using a filtration method and surface-enhanced Raman spectroscopy (SERS) based on vancomycin-functionalized silver nanorod array substrates. It is found that with a two-step filtration process, the limit of detection (LOD) of Salmonella Poona from cantaloupe cubes can be as low as 100 CFU/mL in less than 4 h, whereas the chlorophyll in the lettuce causes severe SERS spectral interference. To improve the LOD of lettuce, a three-step filtration method with a hydrophobic filter is proposed. The hydrophobic filter can effectively eliminate the interferences from chlorophyll and achieve a LOD of 1000 CFU/mL detection of E. coli O157:H7 from lettuce samples within 5 h. With the low LODs and rapid detection time, the SERS biosensing platform has demonstrated its potential as a rapid, simple, and inexpensive means for pathogenic bacteria detection from fresh produce.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L.R. Beuchat, J. Food Prot. 59, 204 (1996).

    Google Scholar 

  2. K.R. Matthews, Microbiology of Fresh Produce (Washington, DC: American Society for Microbiology, 2006), pp. 1–19.

    Book  Google Scholar 

  3. C.S. DeWaal and F. Bhuiya, Outbreaks by the Numbers: Fruits and Vegetables 1990–2005 (Washington, DC: Center for Science and the Public Interest, 2007).

    Google Scholar 

  4. M.F. Lynch, R.V. Tauxe, and C.W. Hedberg, Epidemiol. Infect. 137, 307 (2009).

    Article  Google Scholar 

  5. U. Buchholz, H. Bernard, D. Werber, M.M. Böhmer, C. Remschmidt, H. Wilking, Y. Deleré, M. an der Heiden, C. Adlhoch, J. Dreesman, J. Ehlers, S. Ethelberg, M. Faber, C. Frank, G. Fricke, M. Greiner, M. Höhle, S. Ivarsson, U. Jark, M. Kirchner, J. Koch, G. Krause, P. Luber, B. Rosner, K. Stark, and M. Kühne, New Engl. J. Med. 365, 1763 (2011).

    Article  Google Scholar 

  6. C.N. Berger, S.V. Sodha, R.K. Shaw, P.M. Griffin, D. Pink, and G. Frankel, Environ. Microbiol. 12, 2385 (2010).

    Article  Google Scholar 

  7. M.P. Doyle and M.C. Erickson, J. Appl. Microbiol. 105, 317 (2008).

    Article  Google Scholar 

  8. L.J. Harris, J.N. Farber, L.R. Beuchat, M.E. Parish, T.V. Suslow, E.H. Garrett, and F.F. Busta, Compr. Rev. Food Sci. Food Saf. 2, 78 (2003).

    Article  Google Scholar 

  9. CDC, Multistate Outbreak of Salmonella Typhimurium and Salmonella Newport Infections Linked to Cantaloupe (Final Update) (Atlanta: Centers for Disease Control and Prevention, 2012).

    Google Scholar 

  10. CDC, Reports of Selected E. coli Outbreak Investigations (Atlanta: Centers for Disease Control and Prevention, 2014).

    Google Scholar 

  11. J.T. Fox, J.S. Drouillard, X. Shi, and T.G. Nagaraja, J. Anim. Sci. 87, 1304 (2009).

    Article  Google Scholar 

  12. S. Bouguelia, Y. Roupioz, S. Slimani, L. Mondani, M.G. Casabona, C. Durmort, T. Vernet, R. Calemczuk, and T. Livache, Lab Chip 13, 4024 (2013).

    Article  Google Scholar 

  13. R.D. Hoelzle, B. Virdis, and D.J. Batstone, Biotechnol. Bioeng. 111, 2139 (2014).

    Article  Google Scholar 

  14. A. Huang, Z. Qiu, M. Jin, Z. Shen, Z. Chen, X. Wang, and J.W. Li, Int. J. Food Microbiol. 185, 27 (2014).

    Article  Google Scholar 

  15. S. Furukawa, Y. Akiyoshi, G.A. O’Toole, H. Ogihara, and Y. Morinaga, Int. J. Food Microbiol. 138, 176 (2010).

    Article  Google Scholar 

  16. H.S. Eom, B.H. Hwang, D.H. Kim, I.B. Lee, Y.H. Kim, and H.J. Cha, Biosens. Bioelectron. 22, 845 (2007).

    Article  Google Scholar 

  17. S.E. Frima and L. Zeiri, J. Raman Spectrosc. 40, 277 (2009).

    Article  Google Scholar 

  18. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, and M.S. Feld, Phys. Rev. Lett. 78, 1667 (1997).

    Article  Google Scholar 

  19. S.M. Nie and S.R. Emery, Science 275, 1102 (1997).

    Article  Google Scholar 

  20. S.B. Chaney, S. Shanmukh, R.A. Dluhy, and Y.P. Zhao, Appl. Phys. Lett. 87, 031908 (2005).

    Article  Google Scholar 

  21. J.D. Driskell, S. Shanmukh, Y. Liu, S.B. Chaney, X.J. Tang, Y.P. Zhao, and R.A. Dluhy, J. Phys. Chem. C 112, 895 (2008).

    Article  Google Scholar 

  22. S. Shanmukh, L. Jones, J. Driskell, Y.P. Zhao, R. Dluhy, and R.A. Tripp, Nano Lett. 6, 2630 (2006).

    Article  Google Scholar 

  23. Y.P. Zhao, S.B. Chaney, S. Shanmukh, and R.A. Dluhy, J. Phys. Chem. B 110, 3153 (2006).

    Article  Google Scholar 

  24. J.D. Driskell, Y. Zhu, C.D. Kirkwood, Y.P. Zhao, R.A. Dluhy, and R.A. Tripp, PLoS One 5, e10222 (2010).

    Article  Google Scholar 

  25. S. Shanmukh, L. Jones, Y.P. Zhao, J. Driskell, R. Tripp, and R. Dluhy, Anal. Bioanal. Chem. 390, 1551 (2008).

    Article  Google Scholar 

  26. H. Chu, Y. Huang, and Y. Zhao, Appl. Spectrosc. 62, 922 (2008).

    Article  Google Scholar 

  27. X. Wu, S. Gao, J.S. Wang, H. Wang, Y.W. Huang, and Y. Zhao, Analyst 137, 4226 (2012).

    Article  Google Scholar 

  28. X. Wu, J. Chen, B. Park, Y. Huang, and Y. Zhao, Advances in Applied Nanotechnology for Agriculture (Washington, DC: American Chemical Society, 2013), pp. 85–108.

    Book  Google Scholar 

  29. X. Du, H. Chu, Y. Huang, and Y. Zhao, Appl. Spectrosc. 64, 781 (2010).

    Article  Google Scholar 

  30. J.D. Driskell, A.G. Seto, L.P. Jones, S. Jokela, R.A. Dluhy, Y.P. Zhao, and R.A. Tripp, Biosens. Bioelectron. 24, 917 (2008).

    Article  Google Scholar 

  31. X. Wu, C. Xu, R.A. Tripp, Y. Huang, and Y. Zhao, Analyst 138, 3005 (2013).

    Article  Google Scholar 

  32. Y.J. Liu, H.Y. Chu, and Y.P. Zhao, J. Phys. Chem. C 114, 8176 (2010).

    Article  Google Scholar 

  33. X.M. Wu, Y.W. Huang, B. Park, R.A. Tripp, and Y.P. Zhao, Talanta 139, 96 (2015).

    Article  Google Scholar 

  34. M. Manjare and Y. Ting, Wu, B. Yang, and Y.P. Zhao. Appl. Phys. Lett. 104, 054102 (2014).

    Article  Google Scholar 

  35. J.G. Fan and Y.P. Zhao, Langmuire 26, 8245 (2010).

    Article  Google Scholar 

  36. D.I. Arnon, Plant Physiol. 24, 1 (1949).

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially founded by the National Science Foundation under contract number CBET-1064228. X.W. and J.C. would like to thank UGA College of Agricultural and Environmental Sciences Experimental Station for their generous financial support. C.H. would like to thank National Natural Science Foundation of China (Grant No. 61575087); Natural Science Foundation of Jiangsu Province, China (Grant No. BK20151164); and the Priority Academic Program Development of Jiangsu Higher Education Institutions for their generous financial support of her research conducted at the University of Georgia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caiqin Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Han, C., Chen, J. et al. Rapid Detection of Pathogenic Bacteria from Fresh Produce by Filtration and Surface-Enhanced Raman Spectroscopy. JOM 68, 1156–1162 (2016). https://doi.org/10.1007/s11837-015-1724-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1724-x

Keywords

Navigation