Skip to main content
Log in

Effect of Anode Change on Heat Transfer and Magneto-hydrodynamic Flow in Aluminum Reduction Cell

  • Published:
JOM Aims and scope Submit manuscript

Abstract

In order to explore the impact of anode replacement on heat transfer and magneto-hydrodynamic flow in aluminum smelting cells, a transient three-dimensional coupled mathematical model has been developed. With a steady state magnetic field, an electrical potential approach was used to obtain electromagnetic fields. Joule heating and Lorentz force, which were the source terms in the energy and momentum equations, were updated at each iteration. The phase change of molten electrolyte (bath) was modeled by an enthalpy-based technique in which the mushy zone was treated as a porous medium with porosity equal to the liquid fraction. A reasonable agreement between the test data and simulated results was achieved. Under normal conditions, the bath at the middle of the cell is hotter, while becoming colder at the four corners. Due to the heat extracted from the bath, the temperature of the new cold anode increases over time. The temperature of the bath under the new cold anode therefore quickly drops, resulting in a decrease of the electrical conductivity. More Joule effect is created. In addition, the bath under the new cold anode gradually freezes and flows more slowly. The temperature of the new anode located at the middle of the cell rises faster because of the warmer bath. It is easier to eliminate the effect of anode change when it occurs in the middle of the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\( \vec{A} \) :

Magnetic potential vector

\( A_{\text{mush}} \) :

Mushy zone constant

\( \vec{B} \) :

Magnetic flux density (T)

\( c_{\text{p}} \) :

Heatcapacity [J/(kg K)]

\( \vec{F}_{\text{e}} \) :

Lorentz force (N/m3)

\( \vec{F}_{\text{b}} \) :

Buoyancy force (N/m3)

\( \vec{F}_{\text{p}} \) :

Pressure drop (m/s)

\( f_{\text{l}} \) :

Liquid fraction

\( H \) :

Enthalpy (J/kg)

\( h \) :

Sensible enthalpy (J/kg)

\( h_{\text{ref}} \) :

Reference enthalpy (J/kg)

\( \vec{J} \) :

Current density (A/m2)

\( k_{\text{eff}} \) :

Effective thermal conductivity [W/(m K)]

\( L \) :

Latent heat (J/kg)

\( p \) :

Pressure (Pa)

\( Q_{\text{J}} \) :

Joule heating (W/m3)

\( T \) :

Temperature (K)

\( T_{\text{ref}} \) :

Reference temperature (K)

\( T_{\text{l}} \) :

Liquidus temperature (K)

\( T_{\text{s}} \) :

Solidus temperature (K)

\( t \) :

Time (s)

\( \vec{v} \) :

Velocity (m/s)

\( \mu_{0} \) :

Vacuum permittivity of metal (F/m)

\( \rho \) :

Density (kg/m3)

\( \sigma \) :

Electrical conductivity [1/(Ω m)]

\( \varphi \) :

Electric potential (V)

References

  1. S. Das, JOM 64, 285 (2012).

    Article  Google Scholar 

  2. N.A. Warner, Metall. Mater. Trans. B 39, 246 (2008).

    Article  Google Scholar 

  3. G.P. Tarcy, H. Kvande, and A. Tabereaux, JOM 63, 101 (2011).

    Article  Google Scholar 

  4. P. Desclaux, Metall. Mater. Trans. B 32B, 743 (2001).

    Article  Google Scholar 

  5. J. Zoric, J. Thonstad, and T. Haarberg, Metall. Mater. Trans. B 30B, 341 (1999).

    Article  Google Scholar 

  6. M.P. Taylor, W.D. Zhang, V. Wills, and S. Schmid, Trans. IChemE. 74, 913 (1996).

    Article  Google Scholar 

  7. J.M. Purdie, M. Bilek, and M.P. Taylor, Light Metals (Warrendale, PA: TMS, 1993), pp. 335–360.

    Google Scholar 

  8. C.Y. Cheung, C. Menictas, J. Bao, M. Skyllas-Kazacos, and B.J. Welch, AIChE J. 59, 1544 (2013).

    Article  Google Scholar 

  9. M. Dupuis and V. Bojarevics, Light Metals (Warrendale, PA: TMS, 2005), pp. 449–454.

    Google Scholar 

  10. Y. Safa, M. Flueck, and J. Rappaz, Appl. Math. Model. 33, 1479 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  11. R. Kalter, M.J. Tummers, S. Kenjereš, B.W. Righolt, and C.R. Kleijn, Int. J. Heat Fluid Flow 47, 113 (2014).

    Article  Google Scholar 

  12. W. Bian, P. Vasseur, E. Bilgen, and F. Meng, Int. J. Heat Fluid Flow 17, 36 (1996).

    Article  Google Scholar 

  13. R. Kumar and A. Dewan, Int. J. Heat Mass Transf. 72, 680 (2014).

    Article  Google Scholar 

  14. R. Dutta, A. Dewan, and B. Srinivasan, Int. J. Heat Mass Transf. 65, 750 (2013).

    Article  Google Scholar 

  15. S. Bouabdallah and R. Bessaïh, Int. J. Heat Fluid Flow 37, 154 (2012).

    Article  Google Scholar 

  16. T.Q. Li, C.S. Wu, Y.H. Feng, and L.C. Zheng, Int. J. Heat Fluid Flow 34, 117 (2012).

    Article  Google Scholar 

  17. R. Banki, H. Hoteit, and A. Firoozabadi, Int. J. Heat Mass Transf. 51, 3387 (2008).

    Article  MATH  Google Scholar 

  18. D.A. Bograchev and S. Martemianov, Int. J. Heat Mass Transf. 54, 3024 (2011).

    Article  MATH  Google Scholar 

  19. O. Zikanov, A. Thess, P.A. Davidson, and D.P. Ziegler, Metall. Mater. Trans. B 31, 1541 (2000).

    Article  Google Scholar 

  20. Q. Wang, B.K. Li, Z. He, and N.X. Feng, Metall. Mater. Trans. B 45, 272 (2014).

    Article  Google Scholar 

  21. M.P. Taylor, G.L. Johnson, E.W. Andrews, and B.J. Welch, Light Metals (Warrendale, PA: TMS, 2004), pp. 199–206.

    Google Scholar 

  22. R.J. Zhao, L. Gosselin, A. Ousegui, M. Fafard, and D.P. Ziegler, Numer. Heat Transf. A 64, 317 (2013).

    Article  Google Scholar 

  23. M.A. Cooksey, M.P. Taylor, and J.J.J. Chen, JOM 60, 51 (2008).

    Article  Google Scholar 

  24. B. Pekmen and M. Tezer-Sezgin, Int. J. Heat Mass Transf. 71, 172 (2014).

    Article  Google Scholar 

  25. K. Vékony and L.I. Kiss, Metall. Mater. Trans. B 43, 1086 (2012).

    Article  Google Scholar 

  26. Z.S. Kolenda, J. Nowakowski, and P. Oblakowski, Int. J. Heat Mass Tran. 24, 891 (1981).

    Article  Google Scholar 

  27. K. Azari, H. Alamdari, G. Aryanpour, D.P. Ziegler, D. Picard, and M. Fafard, Powder Technol. 246, 650 (2013).

    Article  Google Scholar 

  28. G. Choudhary, Electrochem. Soc. 49, 5111 (1973).

    Google Scholar 

  29. Y. Su, J.H. Davidson, and F.A. Kulacki, Int. J. Heat Fluid Flow 44, 95 (2013).

    Article  Google Scholar 

  30. J.P. Peng, Industrial test study on newly structured cathode aluminum reduction cell (Ph.D. thesis, Northeastern University, Shenyang, China, 2009).

  31. Z.Q. Wang, Industrial experimental study of aluminum reduction cells potline with a new type of cathode design (Ph.D. thesis, Northeastern University, Shenyang, China, 2010).

Download references

Acknowledgement

The authors’ gratitude goes to the National Natural Science Foundation of People’s Republic of China (51434005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baokuan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Li, B. & Fafard, M. Effect of Anode Change on Heat Transfer and Magneto-hydrodynamic Flow in Aluminum Reduction Cell. JOM 68, 610–622 (2016). https://doi.org/10.1007/s11837-015-1714-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1714-z

Keywords

Navigation