Skip to main content
Log in

Synthesis and Characterization of High-Energy Ball-Milled Nanostructured Fe25Se75

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Iron Selenide (Fe25Se75) powders have been synthesized by mechanical alloying from pure elemental Fe and Se powders in a high-energy planetary ball mill. Morphological, compositional, structural and thermal changes during milling have been analyzed by scanning electron microscopy coupled to energy dispersive x-ray analysis, x-ray diffraction (XRD) and differential scanning calorimetry (DSC). With milling time up to 6 h, combined XRD patterns and DSC show α-Fe as well as some amorphous selenium. For the samples milled between 10 h and 20 h, the orthorhombic FeSe2 and β-FeSe hexagonal nanometric phases are formed and the volume fraction of the α-Fe phase decreases. As for 33 h and 52 h of milling, the α-Fe phase completely disappears and a new phase emerges, also in nanometric scale, typical of Fe7Se8 phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B.X. Yuan, X.Q. Hou, Y.L. Han, W.L. Luan, and S.T. Tu, New J. Chem. 36, 2101 (2012).

    Article  Google Scholar 

  2. B. Ouertani, J. Ouertfelli, M. Saadoun, B. Bessais, H. Ezzaouia, and J.C. Bernède, Sol. Energy Mater. Sol. Cells 87, 501 (2005).

    Article  Google Scholar 

  3. Q.J. Feng, D.Z. Shen, J.Y. Zhang, B.S. Li, B.H. Li, Y.M. Lu, X.W. Fan, and H.W. Liang, Appl. Phys. Lett. 88, 12505 (2006).

    Article  Google Scholar 

  4. Y. Takemura, H. Suto, N. Honda, K. Kakuno, and K. Saito, J. Appl. Phys. 81, 5177 (1997).

    Article  Google Scholar 

  5. T. Harada, J. Phys. Soc. Jpn. 67, 1352 (1998).

    Article  Google Scholar 

  6. A.U. Ubal, Y.S. Sakhare, M.R. Belkedkar, and Arivnd Singh, Mater. Res. Bull. 48, 863 (2013).

    Article  Google Scholar 

  7. A. Błachowski, K. Ruebenbauer, J. Żukrowski, J. Przewoźnik, K. Wojciechowski, and Z.M. Stadnik, J. Alloys Compd. 494, 1 (2010).

    Article  Google Scholar 

  8. Chung-Chieh Chang, Chih-Han Wang, Min-Hsueh Wen, Wu Yu-Ruei, Yao-Tsung Hsieh, and Wu Maw-Kuen, Solid State Commun. 152, 649 (2012).

    Article  Google Scholar 

  9. M.K. Wu, F.C. Hsu, K.W. Yeh, T.W. Huang, J.Y. Luo, M.J. Wang, T.K. Chena, S.M. Rao, B.H. Mok, C.L. Chen, Y.L. Huang, C.T. Ke, P.M. Wu, A.M. Chang, C.T. Wu, and T.P. Perng, Physica C 469, 340 (2009).

    Article  Google Scholar 

  10. X.J. Wu, Z.Z. Zhang, J.Y. Zhang, Z.G. Ju, B.H. Li, B.S. Li, C.X. Shan, D.X. Zhao, B. Yao, and D.Z. Shen, Thin Solid Films 516, 6116 (2008).

    Article  Google Scholar 

  11. P.Y. Chen, S.F. Hu, R.S. Liu, and C.Y. Huang, Thin Solid Films 519, 8397 (2011).

    Article  Google Scholar 

  12. Azam Sohbani and Masoud Salavati-Niasari, J. Alloys Compd. 625, 26 (2015).

    Article  Google Scholar 

  13. C.E.M. Campos, J.C. de Lima, T.A. Grandi, K.D. Machado, and P.S. Pizani, Solid State Commun. 123, 179 (2002).

    Article  Google Scholar 

  14. N. Hamdadou, A. Kheil, M. Morsli, and J.C. Bernède, Vacuum 77, 151 (2005).

    Article  Google Scholar 

  15. Z. Qin, B.C. Yang, S.R. Zhang, K. Li, S.Q. Yan, X.W. Lv, and Z.J. Li, Vacuum 111, 157 (2015).

    Article  Google Scholar 

  16. H. Okamoto, J. Phase Equilib. 12, 383 (1991).

    Article  Google Scholar 

  17. S.C. Tjong and H. Chen, Mater. Sci. Eng. R 45, 1 (2004).

    Article  Google Scholar 

  18. C.C. Koch, Nanostruct. Mater 9, 13 (1997).

    Article  Google Scholar 

  19. M.S. El-Eskandarany, Mechanical Alloying for Fabrication of Advanced Engineering Materials (Norwich, New York: Noyes Publications, William Andrew Publishing, 2001).

    Google Scholar 

  20. R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L.W. Molenkamp, Nat. Lond. 402, 787 (1999).

    Article  Google Scholar 

  21. L. Lutterotti, Acta Crystallogr. A 56, 54 (2000).

    Article  Google Scholar 

  22. H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).

    Article  Google Scholar 

  23. B.E. Warren, X-Ray Diffraction (Boston: Addison-Wesley, 1969), p. 275.

    Google Scholar 

  24. J.S. Benjamin, Metall. Trans. 1, 2943 (1970).

    Google Scholar 

  25. J.C. de Lima, V.H.F. dos Santos, and T.A. Grandi, Nanostruct. Mater. 11, 51 (1999).

    Article  Google Scholar 

  26. X.J. Xia, F.Q. Huang, X.M. Xie, and M.H. Jiang, Europhys. Lett. 86, 37008 (2009).

    Article  Google Scholar 

  27. Z. Ma, M. Dong, and Y. Liu, J. Supercond. Novel Magn. 27, 775 (2014).

    Article  Google Scholar 

  28. JCPDS, Powder Diffraction File Search Manual International Centre for Diffraction Data, Pennsylvania, USA, 1981.

  29. X. Li, Z. Ma, Y. Liu, M. Dong, and L. Yu, IEEE Trans. Appl. Supercond. 23, 7000405 (2013).

    Article  Google Scholar 

  30. J.C. Grivel, A.C. Wulff, Y. Zhao, N.H. Andersen, J. Bednareik, and M.V. Zimmermann, Supercond. Sci. Technol. 24, 015007 (2011).

    Article  Google Scholar 

  31. K. El-Sayed, M. Baker, Z.K. Heiba, and A.R. Al-Nabriss, Superlattices Microstruct. 75, 311 (2014).

    Article  Google Scholar 

  32. S. Thanikaikarasan, T. Mahalingam, K. Sundaram, A. Kathalingam, Y.D. Kim, and T. Kim, Vacuum 83, 1066 (2009).

    Article  Google Scholar 

  33. S. Thanikaikarasan and T. Mahalingam, J. Alloys Compd. 511, 115 (2012).

    Article  Google Scholar 

  34. C.E.M. Campos, J.C. de Lima, T.A. Grandi, K.D. Machado, V. Drago, and P.S. Pizani, J. Magn. Magn. Mater. 270, 89 (2004).

    Article  Google Scholar 

  35. A. Djekoun, A. Otmani, B. Bouzabata, L. Bechiri, N. Randrianantoandro, and J.M. Greneche, Catal. Today 113, 235 (2006).

    Article  Google Scholar 

  36. C.E.M. Campos, J.C. de Lima, T.A. Grandi, K.D. Machado, V. Drago, and P.S. Pizani, Solid State Commun. 131, 265 (2004).

    Article  Google Scholar 

  37. C.E.M. Campos, J.C. de Lima, T.A. Grandi, K.D. Machado, P.S. Pizani, and R. Hinrichs, Solid State Commun. 128, 229 (2003).

    Article  Google Scholar 

  38. C.E.M. Campos, J.C. de Lima, T.A. Grandi, K.D. Machado, and P.S. Pizani, Physica B 324, 409 (2002).

    Article  Google Scholar 

  39. J.C. de Lima, T.A. Grandi, and R.S. de Biasi, J. Non-Cryst. Solids 286, 93 (2001).

    Article  Google Scholar 

  40. H.Y. Zhang, Z.Q. Hu, and K. Lu, Nanostruct. Mater. 5, 41 (1995).

    Article  Google Scholar 

  41. A.A. Elabbar and A.A. Abu-Sehly, Mater. Chem. Phys. 141, 713 (2013).

    Article  Google Scholar 

  42. G.J. Fan, F.Q. Guo, Z.Q. Hu, M.X. Quan, and K. Lu, Phys. Rev. B 55, 11010 (1997).

    Article  Google Scholar 

  43. H.Y. Zhang, K. Lu, and Z.Q. Hu, Nanostruct. Mater. 6, 489 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

Anne-Marie Mercier (Laboratoire des fluorures, Université du Maine) and Kamel Taibi (Crystallography-Thermodynamics Laboratory, Faculty of Chemistry, USTHB, Algiers) are gratefully acknowledged for their help in performing XRD and SEM experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Djekoun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chebli, A., Djekoun, A., Boudinar, N. et al. Synthesis and Characterization of High-Energy Ball-Milled Nanostructured Fe25Se75 . JOM 68, 351–361 (2016). https://doi.org/10.1007/s11837-015-1682-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1682-3

Keywords

Navigation