Skip to main content
Log in

Predicting Texture Evolution in Ta and Ta-10W Alloys Using Polycrystal Plasticity

  • Published:
JOM Aims and scope Submit manuscript

Abstract

We present results of texture characterization and predictions of a multiscale physically based constitutive law developed to predict the mechanical response and texture evolution of body-centered cubic metals. The model is unique in the sense that single crystal deformation results not only from the resolved shear stress along the direction of slip (Schmid law) but also from shear stresses resolved along directions orthogonal to the slip direction as well as the three normal stress components (non-Schmid effects). The single crystal model is implemented into a visco-plastic self-consistent homogenization scheme containing a hardening law for crystallographic slip. The polycrystal model is calibrated using a set of mechanical test data collected on a tantalum-tungsten alloy, Ta-10W, in tension and compression and pure tantalum, Ta, in tension, compression, and cross-rolling. We demonstrate that the model effectively captures the texture evolution in all cases. We show that alloying has the effect of increasing the dislocation friction stress, the trapping rate of dislocations, and activation barrier for recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Matsuno, A. Yokoyama, F. Watari, M. Uo, and T. Kawasaki, Biomaterials 22, 1253 (2001).

    Article  Google Scholar 

  2. R. Arsenault and A. Lawley, Philos. Mag. 15, 549 (1967).

    Article  Google Scholar 

  3. S. Chen and G. Gray, Metall. Mater. Trans. A 27, 2994 (1996).

    Article  Google Scholar 

  4. G.T. Gray and K.S. Vecchio, Metall. Mater. Trans. A 26, 2555 (1995).

    Article  Google Scholar 

  5. G.T. Gray III, Annu. Rev. Mater. Res. 42, 285 (2012).

    Article  Google Scholar 

  6. J. Clark Jr, R. Garrett Jr, T. Jungling, and R. Asfahani, Metall. Mater. Trans. A 22, 2959 (1991).

    Article  Google Scholar 

  7. J. Christian, Metall. Trans. A 14, 1237 (1983).

    Article  Google Scholar 

  8. R. Foxall and C. Statham, Acta Metall. 18, 1147 (1970).

    Article  Google Scholar 

  9. L. Yang, P. Söderlind, and J.A. Moriarty, Philos. Mag. A 81, 1355 (2001).

    Article  Google Scholar 

  10. T. Mitchell and W. Spitzig, Acta Metall. 13, 1169 (1965).

    Article  Google Scholar 

  11. M. Ardeljan, I.J. Beyerlein, and M. Knezevic, J. Mech. Phys. Solids 66, 16 (2014).

    Article  Google Scholar 

  12. M. Ardeljan, M. Knezevic, T. Nizolek, I.J. Beyerlein, N.A. Mara, and T.M. Pollock, Int. J. Plast. 74, 35 (2015).

    Article  Google Scholar 

  13. M. Knezevic, M. Zecevic, I.J. Beyerlein, J.F. Bingert, and R.J. McCabe, Acta Mater. 88, 55 (2015).

    Article  Google Scholar 

  14. M. Knezevic, J.S. Carpenter, M.L. Lovato, and R.J. McCabe, Acta Mater. 63, 162 (2014).

    Article  Google Scholar 

  15. M. Knezevic, I.J. Beyerlein, M.L. Lovato, C.N. Tomé, A.W. Richards, and R.J. McCabe, Int. J. Plast. 62, 93 (2014).

    Article  Google Scholar 

  16. A. Bhattacharyya, M. Knezevic, and M. Abouaf, Metall. Mater. Trans. A 46, 1085 (2015).

    Article  Google Scholar 

  17. R.A. Lebensohn and C.N. Tomé, Acta Metall. Mater. 41, 2611 (1993).

    Article  Google Scholar 

  18. M. Knezevic, R.J. McCabe, R.A. Lebensohn, C.N. Tomé, C. Liu, M.L. Lovato, and B. Mihaila, J. Mech. Phys. Solids 61, 2034 (2013).

    Article  Google Scholar 

  19. H. Lim, C.R. Weinberger, C.C. Battaile, and T.E. Buchheit, Modell. Simul. Mater. Sci. Eng. 21, 045015 (2013).

    Article  Google Scholar 

  20. M. Knezevic, T. Nizolek, M. Ardeljan, I.J. Beyerlein, N.A. Mara, and T.M. Pollock, Int. J. Plast. 57, 16 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

Support for this research was provided by H.C. Starck, Newton, MA, 02461, USA. I. J. Beyerlein would like to acknowledge support by a Laboratory Directed Research and Development Program Award Number 20140348ER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Knezevic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knezevic, M., Zecevic, M., Beyerlein, I.J. et al. Predicting Texture Evolution in Ta and Ta-10W Alloys Using Polycrystal Plasticity. JOM 67, 2670–2674 (2015). https://doi.org/10.1007/s11837-015-1613-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1613-3

Keywords

Navigation