Skip to main content
Log in

Influence of Applied Voltage and Film-Formation Time on Microstructure and Corrosion Resistance of Coatings Formed on Mg-Zn-Zr-Ca Bio-magnesium Alloy

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The influence of applied voltage and film-formation time on the microstructure and corrosion resistance of coatings formed on a Mg-Zn-Zr-Ca novel bio-magnesium alloy has been investigated by micro-arc oxidation (MAO) treatment. Phase composition and microstructure of as-coated samples were analyzed by the x-ray diffraction, energy dispersive x-ray spectroscopy and scanning electron microscopy. And the porosity and average of micro-pore aperture of the surface on ceramic coatings were analyzed by general image software. Corrosion microstructure of as-coated samples was caught by a microscope digital camera. The long-term corrosion resistance of as-coated samples was tested in simulated body fluid for 30 days. The results showed that the milky white smooth ceramic coating formed on the Mg-Zn-Zr-Ca novel bio-magnesium alloy was a compound of MgO, Mg2SiO4 and MgSiO3, and its corrosion resistance was significantly improved compared with that of the magnesium substrate. In addition, when the MAO applied voltage were 450 V and 500 V and film-formation time were 9 min and 11 min, the surface micro-morphology and the corrosion resistance of as-coated samples were relatively improved. The results provided a theoretical foundation for the application of the Mg-Zn-Zr-Ca novel bio-magnesium alloy in biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. E.L. Zhang, D.S. Yin, L.P. Xu, L. Yang, and K. Yang, Mater. Sci. Eng. C 29, 987 (2009).

    Article  Google Scholar 

  2. F. Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit, and F. Feyerabend, Curr. Opin. Solid State Mater. Sci. 12, 63 (2008).

    Article  Google Scholar 

  3. H.J. Martin, M.F. Horstemeyer, and P.T. Wang, Corros. Sci. 52, 3624 (2010).

    Article  Google Scholar 

  4. M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Biomaterials 27, 1728 (2006).

    Article  Google Scholar 

  5. F. Witte, F. Fischer, and J. Nellesen, Biomaterials 28, 2163 (2006).

    Article  Google Scholar 

  6. F. Witte, Acta Biomater. 6, 1680 (2010).

    Article  Google Scholar 

  7. O. Duygulu, R.A. Kaya, G. Oktay, and A.A. Kaya, Mater. Sci. Forum 421, 546 (2007).

    Google Scholar 

  8. A. Bai and Z.J. Chen, Surf. Coat. Technol. 203, 1956 (2009).

    Article  Google Scholar 

  9. M.P. Staiger, A.M. Pietak, and J. Huadmai, Biomaterials 27, 1728 (2006).

    Article  Google Scholar 

  10. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Prog. Mater. Sci. 45, 103 (2000).

    Article  Google Scholar 

  11. C. Blawer, S.P. Sah, J. Liang, Y.D. Huang, and D. Hoche, Surf. Coat. Technol. 213, 48 (2012).

    Article  Google Scholar 

  12. B.V. Vladimirov, B.L. Krit, V.B. Lyudin, N.V. Morozova, A.D. Rossiiskaya, I.V. Suminov, and A.V. Epel’feld, Surf. Eng. Appl. Elect. 50, 195 (2014).

    Article  Google Scholar 

  13. A. Yabuki, Corros. Sci. 51, 793 (2009).

    Article  Google Scholar 

  14. Q. Zhi, J. Gao, C.F. Dong, and X.G. Li, Acta Metall. 44, 986 (2008).

    Google Scholar 

  15. Y.M. Wang, J.W. Guo, Z.K. Shao, J.P. Zhuang, M.S. Jin, C.J. Wu, D.Q. Wei, and Y. Zhou, Surf. Coat. Technol. 219, 8 (2013).

    Article  Google Scholar 

  16. H. Hornberger, S. Virtanen, and A.R. Boccaccini, Acta Biomater. 8, 2442 (2012).

    Article  Google Scholar 

  17. N. Nassif and I. Ghayad, Adv. Mater. Sci. Eng. (2013). doi:10.1155/2013/532896.

  18. T.S.N.S. Narayanan, I.I.S. Park, and M.H. Lee, Prog. Mater. Sci. 60, 1 (2014).

    Article  Google Scholar 

  19. M. Erinc, W.H. Silleken, E.G.T.M. Mannens, and R.J. Werkhovn, Magnesium Technology (New York: Springer, 2009), pp. 209–214.

    Google Scholar 

  20. J. Liang, P.B. Srinivasan, C. Blawert, M. Stormer, and W. Dietzel, Electrochim. Acta 54, 38 (2009).

    Google Scholar 

  21. A. Ghasemi, V.S. Raja, C. Blawert, W. Dietzel, and K.U. Kainer, Surf. Coat. Technol. 204, 1469 (2008).

    Google Scholar 

  22. X.M. Chen, C.P. Luo, J.W. Liu, and W.F. Li, China Surf. Eng. 19 (5), 14 (2006).

Download references

Acknowledgment

The authors are grateful for the financial support from the Key Project of the Natural Science Foundation of Heilongjiang Province (ZD 201202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Yandong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yandong, Y., Shuzhen, K. & Jie, L. Influence of Applied Voltage and Film-Formation Time on Microstructure and Corrosion Resistance of Coatings Formed on Mg-Zn-Zr-Ca Bio-magnesium Alloy. JOM 67, 2133–2144 (2015). https://doi.org/10.1007/s11837-015-1528-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1528-z

Keywords

Navigation