Skip to main content
Log in

High Performance Oxides-Based Thermoelectric Materials

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Thermoelectric materials have attracted much attention due to their applications in waste-heat recovery, power generation, and solid state cooling. In comparison with thermoelectric alloys, oxide semiconductors, which are thermally and chemically stable in air at high temperature, are regarded as the candidates for high-temperature thermoelectric applications. However, their figure-of-merit ZT value has remained low, around 0.1–0.4 for more than 20 years. The poor performance in oxides is ascribed to the low electrical conductivity and high thermal conductivity. Since the electrical transport properties in these thermoelectric oxides are strongly correlated, it is difficult to improve both the thermoelectric power and electrical conductivity simultaneously by conventional methods. This review summarizes recent progresses on high-performance oxide-based thermoelectric bulk-materials including n-type ZnO, SrTiO3, and In2O3, and p-type Ca3Co4O9, BiCuSeO, and NiO, enhanced by heavy-element doping, band engineering and nanostructuring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008).

    Google Scholar 

  2. M. Scheele, N. Oeschler, K. Meier, A. Kornowski, C. Klinke, and H. Weller, Adv. Funct. Mater. 19, 3476 (2009).

    Google Scholar 

  3. W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang, and C. Uher, Phys. Rev. Lett. 108, 166601 (2012).

    Google Scholar 

  4. Q. Hou, D. Liang, X. Feng, W. Zhao, Y. Chen, and Y. He, Mod. Phys. Lett. B 21, 1447 (2007).

    Google Scholar 

  5. A. Minnich, H. Lee, X. Wang, G. Joshi, M. Dresselhaus, Z. Ren, G. Chen, and D. Vashaee, Phys. Rev. B 80, 155327 (2009).

    Google Scholar 

  6. L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Nature 508, 373 (2014).

    Google Scholar 

  7. A. Nag and V. Shubha, J. Electron. Mater. 43, 962 (2014).

    Google Scholar 

  8. Y.-H. Lin, C.-W. Nan, Y. Liu, J. Li, T. Mizokawa, and Z. Shen, J. Am. Ceram. Soc. 90, 132 (2007).

    Google Scholar 

  9. J. Lan, Y.H. Lin, H. Fang, A. Mei, C.W. Nan, Y. Liu, S. Xu, and M. Peters, J. Am. Ceram. Soc. 93, 2121 (2010).

    Google Scholar 

  10. T. Okuda, K. Nakanishi, S. Miyasaka, and Y. Tokura, Phys. Rev. B 63, 113104 (2001).

    Google Scholar 

  11. J.L. Lan, Y.C. Liu, B. Zhan, Y.H. Lin, B. Zhang, X. Yuan, W. Zhang, W. Xu, and C.W. Nan, Adv. Mater. 25, 5086 (2013).

    Google Scholar 

  12. P. Jood, R.J. Mehta, Y. Zhang, G. Peleckis, X. Wang, R.W. Siegel, T. Borca-Tasciuc, S.X. Dou, and G. Ramanath, Nano Lett. 11, 4337 (2011).

    Google Scholar 

  13. D. Bérardan, E. Guilmeau, A. Maignan, and B. Raveau, Solid State Commun. 146, 97 (2008).

    Google Scholar 

  14. W. Shin and N. Murayama, Jpn. J. Appl. Phys. B 38, L1336 (1999).

    Google Scholar 

  15. K. Koumoto, Y. Wang, R. Zhang, A. Kosuga, and R. Funahashi, Annu. Rev. Mater. Res. 40, 363 (2010).

    Google Scholar 

  16. H. Ohta, K. Sugiura, and K. Koumoto, Inorg. Chem. 47, 8429 (2008).

    Google Scholar 

  17. J. He, Y. Liu, and R. Funahashi, J. Mater. Res. 26, 1762 (2011).

    Google Scholar 

  18. K. Koumoto, I. Terasaki, and R. Funahashi, MRS Bull. 31, 206 (2006).

    Google Scholar 

  19. M. Ohtaki, Kyushu University Global COE Program, Novel Carbon Resour. Sci. Newslett. 3 (2010).

  20. I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, R12685 (1997).

    Google Scholar 

  21. J. Sui, J. Li, J. He, Y.-L. Pei, D. Berardan, H. Wu, N. Dragoe, W. Cai, and L.-D. Zhao, Energ. Environ. Sci. 6, 2916 (2013).

    Google Scholar 

  22. M. Ohtaki, K. Araki, and K. Yamamoto, J. Electron. Mater. 38, 1234 (2009).

    Google Scholar 

  23. M. Ohtaki, T. Tsubota, K. Eguchi, and H. Arai, J. Appl. Phys. 79, 1816 (1996).

    Google Scholar 

  24. Z.-H. Wu, H.-Q. Xie, and Y.-B. Zhai, Appl. Phys. Lett. 103, 243901 (2013).

    Google Scholar 

  25. D. Khanal, J.W. Yim, W. Walukiewicz, and J. Wu, Nano Lett. 7, 1186 (2007).

    Google Scholar 

  26. C. Wang, Y. Wang, G. Zhang, C. Peng, and G. Yang, Phys. Chem. Chem. Phys. 16, 3771 (2014).

    Google Scholar 

  27. N. Schäuble, B.E. Süess, S. Populoh, A. Weidenkaff, and M.H. Aguirre, eds., A Morphology Study on Thermoelectric Al-Substituted ZnO. 9th European Conference on Thermoelectrics: ECT2011 (Melville, NY: AIP Publishing, 2012).

  28. P. Jood, R.J. Mehta, Y. Zhang, T. Borca-Tasciuc, S.X. Dou, D.J. Singh, and G. Ramanath, RSC Advances 4, 6363 (2014).

    Google Scholar 

  29. S. Ohta, T. Nomura, H. Ohta, and K. Koumoto, J. Appl. Phys. 97, 034106 (2005).

    Google Scholar 

  30. H. Suzuki, H. Bando, Y. Ootuka, I.H. Inoue, T. Yamamoto, K. Takahashi, and Y. Nishihara, J. Phys. Soc. Jpn. 65, 1529 (1996).

    Google Scholar 

  31. M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).

    Google Scholar 

  32. N. Wang, H. Chen, H. He, W. Norimatsu, M. Kusunoki, and K. Koumoto, Sci. Rep. 3 (2013).

  33. K. Park, J.S. Son, S.I. Woo, K. Shin, M.-W. Oh, S.-D. Park, and T. Hyeon, J. Mater. Chem. A 2, 4217 (2014).

    Google Scholar 

  34. B. Cheng, H. Fang, J. Lan, Y. Liu, Y.-H. Lin, and C.-W. Nan, J. Am. Ceram. Soc. 94, 2279 (2011).

    Google Scholar 

  35. Y. Liu, Y.H. Lin, W. Xu, B. Cheng, J. Lan, D. Chen, H. Zhu, and C.W. Nan, J. Am. Ceram. Soc. 95, 2568 (2012).

    Google Scholar 

  36. J. Lan, Y.H. Lin, Y. Liu, S. Xu, and C.W. Nan, J. Am. Ceram. Soc. 95, 2465 (2012).

    Google Scholar 

  37. D.G. Cahill, S.K. Watson, and R.O. Pohl, Phys. Rev. B 46, 6131 (1992).

    Google Scholar 

  38. A. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, B. Raveau, and J. Hejtmanek, Phys. Rev. B. 62, 166 (2000).

    Google Scholar 

  39. Y. Morita, J. Poulsen, K. Sakai, T. Motohashi, T. Fujii, I. Terasaki, H. Yamauchi, and M. Karppinen, J. Solid State Chem. 177, 3149 (2004).

    Google Scholar 

  40. R. Asahi, J. Sugiyama, and T. Tani, Phys. Rev. B 66, 155103 (2002).

    Google Scholar 

  41. G. Xu, R. Funahashi, M. Shikano, I. Matsubara, and Y. Zhou, Appl. Phys. Lett. 80, 3760 (2002).

    Google Scholar 

  42. G. Xu, R. Funahashi, M. Shikano, Q. Pu, and B. Liu, Solid State Commun. 124, 73 (2002).

    Google Scholar 

  43. Y. Hu, E. Sutter, W. Si, and Q. Li, Appl. Phys. Lett. 87, 171912 (2005).

    Google Scholar 

  44. M. Shikano and R. Funahashi, Appl. Phys. Lett. 82, 1851 (2003).

    Google Scholar 

  45. O. Motrunich and P.A. Lee, Phys. Rev. B 69, 214516 (2004).

    Google Scholar 

  46. P.-H. Xiang, Y. Kinemuchi, H. Kaga, and K. Watari, J. Alloys Compd. 454, 364 (2008).

    Google Scholar 

  47. Y.-H. Lin, J. Lan, Z. Shen, Y. Liu, C.-W. Nan, and J.-F. Li, Appl. Phys. Lett. 94, 072107 (2009).

    Google Scholar 

  48. T. Yin, D. Liu, Y. Ou, F. Ma, S. Xie, J.-F. Li, and J. Li, J. Phys. Chem. C 114, 10061 (2010).

    Google Scholar 

  49. C. Barreteau, D. Bérardan, L. Zhao, and N. Dragoe, J. Mater. Chem. A 1, 2921 (2013).

    Google Scholar 

  50. J.-L. Lan, B. Zhan, Y.-C. Liu, B. Zheng, Y. Liu, Y.-H. Lin, and C.-W. Nan, Appl. Phys. Lett. 102, 123905 (2013).

    Google Scholar 

  51. F. Li, T.-R. Wei, F. Kang, and J.-F. Li, J. Mater. Chem. A 1, 11942 (2013).

    Google Scholar 

  52. J. Li, J. Sui, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, Y. Pei, and L.-D. Zhao, J. Alloys Compd. 551, 649 (2013).

    Google Scholar 

  53. Y. Liu, J. Lan, W. Xu, Y. Liu, Y.L. Pei, B. Cheng, D.B. Liu, Y.H. Lin, and L.D. Zhao, Chem. Commun. (Camb.) 49, 8075 (2013).

    Google Scholar 

  54. S.D.N. Luu and P. Vaqueiro, J. Mater. Chem. A 1, 12270 (2013).

    Google Scholar 

  55. L. Pan, D. Bérardan, L. Zhao, C.L. Barreteau, and N. Dragoe, Appl. Phys. Lett. 102, 023902 (2013).

    Google Scholar 

  56. D. Sun Lee, T.-H. An, M. Jeong, H.-S. Choi, Y. Soo Lim, W.-S. Seo, C.-H. Park, C. Park, and H.-H. Park, Appl. Phys. Lett. 103, 232110 (2013).

    Google Scholar 

  57. W. Xu, Y. Liu, L.-D. Zhao, P. An, Y.-H. Lin, A. Marcelli, and Z. Wu, J. Mater. Chem. A 1, 12154 (2013).

    Google Scholar 

  58. D. Zou, S. Xie, Y. Liu, J. Lin, and J. Li, J. Mater. Chem. A 1, 8888 (2013).

    Google Scholar 

  59. C. Wiebe, J. Greedan, J. Gardner, Z. Zeng, and M. Greenblatt, Phys. Rev. B 64, 064421 (2001).

    Google Scholar 

  60. A. Kusainova, P. Berdonosov, L. Akselrud, L. Kholodkovskaya, V. Dolgikh, and B. Popovkin, J. Solid State Chem. 112, 189 (1994).

    Google Scholar 

  61. A. Richard, J. Russell, A. Zakutayev, L. Zakharov, D. Keszler, and J. Tate, J. Solid State Chem. 187, 15 (2012).

    Google Scholar 

  62. L.-D. Zhao, V.P. Dravid, and M.G. Kanatzidis, Energ. Environ. Sci. 7, 251 (2014).

    Google Scholar 

  63. J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angew. Chem. Int. Ed. Engl. 48, 8616 (2009).

    Google Scholar 

  64. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Google Scholar 

  65. J.P. Heremans, C.M. Thrush, and D.T. Morelli, Phys. Rev. B 70, 115334 (2004).

    Google Scholar 

  66. D. Sanditov and V. Belomestnykh, Tech. Phys. 56, 1619 (2011).

    Google Scholar 

  67. M. Roufosse and P. Klemens, Phys. Rev. B 7, 5379 (1973).

    Google Scholar 

  68. E.J. Skoug, J.D. Cain, and D.T. Morelli, Appl. Phys. Lett. 98, 261911 (2011).

    Google Scholar 

  69. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’quinn, Nature 413, 597 (2001).

    Google Scholar 

  70. J.-F. Li, W.-S. Liu, L.-D. Zhao, and M. Zhou, NPG Asia Mater. 2, 152 (2010).

    Google Scholar 

  71. J. Li, J. Sui, Y. Pei, X. Meng, D. Berardan, N. Dragoe, W. Cai, and L.-D. Zhao, J. Mater. Chem. A 2, 4903 (2014).

    Google Scholar 

  72. S. Walia, S. Balendhran, H. Nili, S. Zhuiykov, G. Rosengarten, Q.H. Wang, M. Bhaskaran, S. Sriram, M.S. Strano, and K. Kalantar-zadeh, Prog. Mater Sci. 58, 1443 (2013).

    Google Scholar 

  73. P. Patil and L. Kadam, Appl. Surf. Sci. 199, 211 (2002).

    Google Scholar 

  74. L. Cieniek, J. Kusinski, G. Petot-Ervas, and C. Petot, J. Microsc. 237, 329 (2010).

    MathSciNet  Google Scholar 

  75. E. Sher, eds., Thermoelectric Properties of Transition Metal Oxides (NiO and TiO 2 ) in a Finely Dispersgated State. XX International Conference on Thermoelectrics, 2001. Proceedings ICT 2001 (Piscataway, NJ: IEEE, 2001).

  76. K. Park, J. Seong, and G.H. Kim, J. Alloys Compd. 473, 423 (2009).

    Google Scholar 

  77. M. Matsumiya, F. Qiu, W. Shin, N. Izu, N. Murayama, and S. Kanzaki, Thin Solid Films 419, 213 (2002).

    Google Scholar 

  78. D. Flahaut, T. Mihara, R. Funahashi, N. Nabeshima, K. Lee, H. Ohta, and K. Koumoto, J. Appl. Phys. 100, 084911 (2006).

    Google Scholar 

  79. M. Ohtaki, H. Koga, T. Tokunaga, K. Eguchi, and H. Arai, J. Solid State Chem. 120, 105 (1995).

    Google Scholar 

  80. Y. Wang, Y. Sui, and W. Su, J. Appl. Phys. 104, 093703 (2008).

    Google Scholar 

  81. G. Xu, R. Funahashi, Q. Pu, B. Liu, R. Tao, G. Wang, and Z. Ding, Solid State Ionics 171, 147 (2004).

    Google Scholar 

  82. L. Bocher, M. Aguirre, D. Logvinovich, A. Shkabko, R. Robert, M. Trottmann, and A. Weidenkaff, Inorg. Chem. 47, 8077 (2008).

    Google Scholar 

  83. L. Bocher, R. Robert, M.H. Aguirre, S. Malo, S. Hébert, A. Maignan, and A. Weidenkaff, Solid State Sci. 10, 496 (2008).

    Google Scholar 

  84. C.J. Vineis, A. Shakouri, A. Majumdar, and M.G. Kanatzidis, Adv. Mater. 22, 3970 (2010).

    Google Scholar 

  85. J.P. Heremans, M.S. Dresselhaus, L.E. Bell, and D.T. Morelli, Nat. Nanotechnol. 8, 471 (2013).

    Google Scholar 

  86. W. Liu, X. Yan, G. Chen, and Z. Ren, Nano Energy 1, 42 (2012).

    Google Scholar 

  87. P. Pichanusakorn and P. Bandaru, Mat. Sci. Eng. R 67, 19 (2010).

    Google Scholar 

  88. E. GroB, M. Riffel, and U. Stohrer, J. Mater. Res. 10, 35 (1995).

    Google Scholar 

  89. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).

    Google Scholar 

  90. K. Biswas, J. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).

    Google Scholar 

  91. A. Majumdar, Science 303, 777 (2004).

    Google Scholar 

  92. N. Mingo, Phys. Rev. B 68, 113308 (2003).

    Google Scholar 

  93. B. Abeles, Phys. Rev. 131, 1906 (1963).

    Google Scholar 

  94. W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, Phys. Rev. Lett. 96, 045901 (2006).

    Google Scholar 

  95. H. Landolt-Bornstein, W. Axford, L.H. Aller, and P. Biermann, Numerical Data and Functional Relationships in Science and Technology: Group VI: Astronomy Astrophysics and Space Research (Berlin: Springer, 1982).

    Google Scholar 

  96. Z. Ovadyahu and Y. Imry, Phys. Rev. B 24, 7439 (1981).

    Google Scholar 

  97. M. Ahrens, R. Merkle, B. Rahmati, and J. Maier, Phys. B 393, 239 (2007).

    Google Scholar 

  98. A. Srivastava and N. Gaur, J. Phys.: Condens. Matter 21, 096001 (2009).

    Google Scholar 

  99. M.P. Zaitlin and A. Anderson, Phys. Rev. B 12, 4475 (1975).

    Google Scholar 

  100. T. Harman, P. Taylor, M. Walsh, and B. LaForge, Science 297, 2229 (2002).

    Google Scholar 

  101. T. Harman, M. Walsh, and G. Turner, J. Electron. Mater. 34, L19 (2005).

    Google Scholar 

  102. D.J. Paul, ICT - Energy Concepts Towards Zero-Power Information and Communication, ed. G. Fagas (Rijeka, Croatia: InTech Europe, 2014). doi:10.5772/57092.

  103. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard Iii, and J.R. Heath, Nature 451, 168 (2008).

    Google Scholar 

  104. S.N. Girard, J. He, C. Li, S. Moses, G. Wang, C. Uher, V.P. Dravid, and M.G. Kanatzidis, Nano Lett. 10, 2825 (2010).

    Google Scholar 

  105. J. Androulakis, C.-H. Lin, H.-J. Kong, C. Uher, C.-I. Wu, T. Hogan, B.A. Cook, T. Caillat, K.M. Paraskevopoulos, and M.G. Kanatzidis, J. Am. Chem. Soc. 129, 9780 (2007).

    Google Scholar 

  106. Q. Zhang, J. He, T. Zhu, S. Zhang, X. Zhao, and T. Tritt, Appl. Phys. Lett. 93, 102109 (2008).

    Google Scholar 

  107. B.A. Cook, M.J. Kramer, J.L. Harringa, M.K. Han, D.Y. Chung, and M.G. Kanatzidis, Adv. Funct. Mater. 19, 1254 (2009).

    Google Scholar 

  108. S. Raghavan, H. Wang, R.B. Dinwiddie, W.D. Porter, and M.J. Mayo, Scripta Mater. 39, 1119 (1998).

    Google Scholar 

  109. G. Tan, L.D. Zhao, F. Shi, J.W. Doak, S.H. Lo, H. Sun, C. Wolverton, V.P. Dravid, C. Uher, and M.G. Kanatzidis, J. Am. Chem. Soc. (2014).

  110. Y. Pei, H. Wang, and G.J. Snyder, Adv. Mater. 24, 6125 (2012).

    Google Scholar 

  111. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G.J. Snyder, Nature 473, 66 (2011).

    Google Scholar 

  112. S.N. Girard, J. He, X. Zhou, D. Shoemaker, C.M. Jaworski, C. Uher, V.P. Dravid, J.P. Heremans, and M.G. Kanatzidis, J. Am. Chem. Soc. 133, 16588 (2011).

    Google Scholar 

  113. Y. Pei, A.D. LaLonde, N.A. Heinz, X. Shi, S. Iwanaga, H. Wang, L. Chen, and G.J. Snyder, Adv. Mater. 23, 5674 (2011).

    Google Scholar 

  114. Q. Zhang, H. Wang, W. Liu, H. Wang, B. Yu, Q. Zhang, Z. Tian, G. Ni, S. Lee, and K. Esfarjani, Energy Environ. Sci. 5, 5246 (2012).

    Google Scholar 

  115. J.P. Heremans, B. Wiendlocha, and A.M. Chamoire, Energy Environ. Sci. 5, 5510 (2012).

    Google Scholar 

  116. S. Nemov and Y.I. Ravich, Phys. Usp. 41, 735 (1998).

    Google Scholar 

  117. H. Hiramatsu, H. Yanagi, T. Kamiya, K. Ueda, M. Hirano, and H. Hosono, Chem. Mater. 20, 326 (2008).

    Google Scholar 

  118. C. Yu, M.L. Scullin, M. Huijben, R. Ramesh, and A. Majumdar, Appl. Phys. Lett. 92, 191911 (2008).

    Google Scholar 

  119. H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, and M. Hirano, Nat. Mater. 6, 129 (2007).

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Science & Technology of China through a 973-Project, under Grant No. 2013CB632506, NSF of China under Grant No. 51025205 and 11234012, and Specialized Research Fund for the Doctoral Program of Higher Education, under Grant No. 20120002110006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Hua Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, G., Lan, J., Zeng, C. et al. High Performance Oxides-Based Thermoelectric Materials. JOM 67, 211–221 (2015). https://doi.org/10.1007/s11837-014-1218-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1218-2

Keywords

Navigation