Skip to main content
Log in

ICME for Crashworthiness of TWIP Steels: From Ab Initio to the Crash Performance

  • Published:
JOM Aims and scope Submit manuscript

Abstract

During the last decade, integrated computational materials engineering (ICME) emerged as a field which aims to promote synergetic usage of formerly isolated simulation models, data and knowledge in materials science and engineering, in order to solve complex engineering problems. In our work, we applied the ICME approach to a crash box, a common automobile component crucial to passenger safety. A newly developed high manganese steel was selected as the material of the component and its crashworthiness was assessed by simulated and real drop tower tests. The crashworthiness of twinning-induced plasticity (TWIP) steel is intrinsically related to the strain hardening behavior caused by the combination of dislocation glide and deformation twinning. The relative contributions of those to the overall hardening behavior depend on the stacking fault energy (SFE) of the selected material. Both the deformation twinning mechanism and the stacking fault energy are individually well-researched topics, but especially for high-manganese steels, the determination of the stacking-fault energy and the occurrence of deformation twinning as a function of the SFE are crucial to understand the strain hardening behavior. We applied ab initio methods to calculate the stacking fault energy of the selected steel composition as an input to a recently developed strain hardening model which models deformation twinning based on the SFE-dependent dislocation mechanisms. This physically based material model is then applied to simulate a drop tower test in order to calculate the energy absorption capacity of the designed component. The results are in good agreement with experiments. The model chain links the crash performance to the SFE and hence to the chemical composition, which paves the way for computational materials design for crashworthiness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Gottstein, editor, Integral Materials Modeling: Towards Physics-Based Through-Process Models (Weinheim, Germany: Wiley-VCH Verlag, 2007).

    Google Scholar 

  2. J. Allison, B. Cowles, J. DeLoach, T. Pollock, and G. Spanos, Integrated Computational Materials Engineering (ICME): Implementing ICME in the Aerospace, Automotive, and Maritime Industries, Study 15086 (Warrendale, PA: TMS, 2014).

    Google Scholar 

  3. G. Hirt, M. Bambach, S. Seuren, T. Henke, and J. Lohmar, AIP Conf. Proc. 1532, 222 (2013).

    Article  Google Scholar 

  4. C. Haase, S.G. Chowdhury, L.A. Barrales-Mora, D.A. Molodov, and G. Gottstein, Metall. Mater. Trans. A 44, 911 (2013).

    Article  Google Scholar 

  5. A.A. Saleh, C. Haase, E.V. Pereloma, D.A. Molodov, and A.A. Gazder, Acta Mater. 70, 259 (2014).

    Article  Google Scholar 

  6. A. Saeed-Akbari, L. Mosecker, A. Schwedt, and W. Bleck, Metall. Mater. Trans. A 43, 1688 (2012).

    Article  Google Scholar 

  7. G.B. Olson and M. Cohen, Metall. Trans. A7, 1897 (1976).

    Google Scholar 

  8. Y.-K. Lee and C. Choi, Metall. Mater. Trans. A 31, 355 (2000).

    Article  Google Scholar 

  9. B.C. De Cooman, O. Kwon, and K.-G. Chin, Mater. Sci. Tech. 28, 513 (2012).

    Article  Google Scholar 

  10. M. Friák, T. Hickel, F. Körmann, A. Udyansky, A. Dick, J. von Pezold, D. Ma, O. Kim, W.A. Counts, M. Šob, T. Gebhardt, D. Music, J.M. Schneider, D. Raabe, and J. Neugebauer, Steel Res. Int. 82, 86 (2011).

    Article  Google Scholar 

  11. D.R. Steinmetz, T. Jäpel, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed-Akbari, T. Hickel, F. Roters, and D. Raabe, Acta Mater. 61, 494 (2013).

    Article  Google Scholar 

  12. A. Rusinek, R. Zaera, P. Forquin, and J.R. Klepaczko, Thin-Walled Struct. 46, 1143 (2008).

    Article  Google Scholar 

  13. A.A.A. Alghamdi, Thin-Walled Struct. 39, 189 (2001).

    Article  Google Scholar 

  14. D. Karagiozova and N. Jones, Int. J. Impact Eng. 30, 167 (2004).

    Article  Google Scholar 

  15. D. Karagiozova, M. Alves, and N. Jones, Int. J. Impact Eng. 24, 1083 (2000).

    Article  Google Scholar 

  16. I. Karaman, H. Sehitoglu, A.J. Beaudoin, Y.I. Chumlyakov, H.J. Maier, and C.N. Tomé, Acta Mater. 48, 2031 (2000).

    Article  Google Scholar 

  17. S.R. Kalidindi, Int. J. Plast. 17, 837 (2001).

    Article  MATH  Google Scholar 

  18. E.A. El-Danaf, S.R. Kalidindi, and R.D. Doherty, Int. J. Plast. 17, 1245 (2001).

    Article  MATH  Google Scholar 

  19. O. Bouaziz and N. Guelton, Mater. Sci. Eng. A 319–321, 246 (2001).

    Article  Google Scholar 

  20. S. Allain, J.P. Chateau, and O. Bouaziz, Mater. Sci. Eng. A 387–389, 143 (2004).

    Article  Google Scholar 

  21. O. Bouaziz, S. Allain, and C. Scott, Scripta Mater. 58, 484 (2008).

    Article  Google Scholar 

  22. D. Barbier, V. Favier, and B. Bolle, Mater. Sci. Eng. A 540, 212 (2012).

    Article  Google Scholar 

  23. Y. Li, L. Zhu, Y. Liu, Y. Wei, Y. Wu, D. Tang, and Z. Mi, J. Mech. Phys. Solids 61, 2588 (2013).

    Article  Google Scholar 

  24. J. Kim, Y. Estrin, and B.C. De Cooman, Metall. Mater. Trans. A 44, 4168 (2013).

    Article  Google Scholar 

  25. F. Roters, D. Raabe, and G. Gottstein, Acta Mater. 48, 4181 (2000).

    Article  Google Scholar 

  26. F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe, Acta Mater. 58, 1152 (2010).

    Article  Google Scholar 

  27. F. Roters, P. Eisenlohr, C. Kords, D.D. Tjahjanto, M. Diehl, and D. Raabe, Procedia IUTAM 3, 3 (2012).

    Article  Google Scholar 

  28. S. Mahajan and G.Y. Chin, Acta Metall. 21, 1353 (1973).

    Article  Google Scholar 

  29. T. Hickel, B. Grabowski, F. Körmann, and J. Neugebauer, J. Phys. Condens. Matter 24, 53202 (2012).

    Article  Google Scholar 

  30. T. Hickel, A. Dick, B. Grabowski, F. Körmann, and J. Neugebauer, Steel Res. Int. 80, 4 (2009).

    Google Scholar 

  31. A. Dick, T. Hickel, and J. Neugebauer, Steel Res. Int. 80, 603 (2009).

    Google Scholar 

  32. A. Zunger, S.-H. Wei, L. Ferreira, and J. Bernard, Phys. Rev. Lett. 65, 353 (1990).

    Article  Google Scholar 

  33. T. Hickel, S. Sandlöbes, R. Marceau, A. Dick, I. Bleskov, J. Neugebauer, and D. Raabe, Acta Mater. 75, 147 (2014).

    Article  Google Scholar 

  34. P.J.H. Denteneer and W. van Haeringen, J. Phys. C: Solid State Phys. 20, L883 (1987).

    Article  Google Scholar 

  35. A. Dick, A. Saeed-Akbari, T. Hickel, and J. Neugebauer, unpublished research (2014).

Download references

Acknowledgements

The authors gratefully acknowledge funding received from the German Research Foundation (DFG) within the collaborative research center SFB761 “Steel – ab initio.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Güvenç.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güvenç, O., Roters, F., Hickel, T. et al. ICME for Crashworthiness of TWIP Steels: From Ab Initio to the Crash Performance. JOM 67, 120–128 (2015). https://doi.org/10.1007/s11837-014-1192-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1192-8

Keywords

Navigation