Skip to main content
Log in

A Model of Vanadium Carbide Growth on Steel Surfaces Obtained by Thermo Reactive Deposition

  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this article, the mathematical model of vanadium carbide growth was established on the basis of principles of physical chemistry. Based on the results of the experimental work and literature data, the assumption that the speed of the process is proportional to the thermodynamic activity of carbon in the austenite has been proven. An analysis of the relationship between the thickness of the vanadium carbide layer and the salt bath temperature, immersion time, and chemical composition of the substrate was conducted. A comparison of the model-calculated values and the results obtained by the experiment indicates that the model has been properly founded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Fujita and T. Arai, Proc. 4th Int. Congress of IFHT (Berlin, Germany, 3–7 June 1985), pp. 1109–1124.

  2. S.B. Fazluddin, A. Koursaris. C. Ringas, and K. Cowie, Miner. Met. Mater. Soc. 45 (1993).

  3. T. Arai and N. Komatsu, Proceedings of the 18th International Machine Tool Design and Research Conference, London, U.K., Sept. 14–16, 1977, p. 225.

  4. T. Arai and H.M. Glaser, Proc. Conf. Manufacturing Strategies, vol. 6 (Cleveland, OH: Precision Metalforming Association, 1996), p. 549.

  5. M. Stupnišek and B. Štefotič, Proceedings of YUSTOM ’86, Plitvička jezera, May 20–23, 1986, pp. 323–330.

  6. B. Štefotič, J. Vižintin, F. Grobelšek, and M. Stupnišek, Proceedings “Tribologija v teoriji in praksi”, Ljubljana, 1996, pp. 233–241.

  7. H.L. Liu, J.C. Zhu, Y. Liu, and Z.H. Lai, Mater. Lett. 62, 3084 (2008).

    Article  Google Scholar 

  8. J.H. Ma, M.N. Wu, Y.H. Du, S.Q. Chen, J. Ye, and L.L. Jin, Mater. Lett. 63, 905 (2009).

    Article  Google Scholar 

  9. Y.H. Chen, K.W. Lee, W.A. Chiou, Y.W. Chung, and L.M. Keer, Surf. Coat. Technol. 146–147, 209 (2001).

    Article  Google Scholar 

  10. C.K.N. Oliveira, C.L. Benassi, and L.C. Casteletti, Surf. Coat. Technol. 201, 1880 (2006).

    Article  Google Scholar 

  11. T. Arai and S. Moriyana, Thin Solid Films 249, 54 (1994).

    Article  Google Scholar 

  12. S. Sen, Vacuum 79, 63 (2005).

    Article  Google Scholar 

  13. F.S. Chen and K.L. Wang, Surf. Coat. Technol. 115, 239 (1999).

    Article  Google Scholar 

  14. M. Aghaie-Khafri and F. Fazlalipour, Surf. Coat. Technol. 202, 4107 (2008).

    Article  Google Scholar 

  15. X.J. Liu, H.C. Wang, D.W. Li, and Y.X. Wu, Surf. Coat. Technol. 201, 2414 (2006).

    Article  Google Scholar 

  16. B. Matijević and M. Stupnišek, Surf. Eng. 23, 1 (2007).

    Article  Google Scholar 

  17. M. Aghaie-Khafri, F. Fazlalipour, and J. Phys, Chem. Solids 69, 2465 (2008).

    Article  Google Scholar 

  18. T. Arai, J. Heat. Treat. 1, 15 (1979).

    Article  Google Scholar 

  19. X.G. Lu, M. Selleby, and B. Sundman, Acta Mater. 55, 1215 (2007).

    Article  Google Scholar 

  20. V.N. Lipatnikov, W. Lengauer, P. Ettmayer, E. Keil, G. Groboth, and E. Kny, J. Alloys Compd. 261, 192 (1997).

    Article  Google Scholar 

  21. U. Sen, Mater. Chem. Phys. 86, 189 (2004).

    Article  Google Scholar 

  22. B. Matijević and M. Stupnišek, Mater. Tehnol. 34, 237 (2000).

    Google Scholar 

  23. A. Bendavid, P.J. Martin, T.J. Kinder, and E.W. Preston, Surf. Coat. Technol. 163–164, 347 (2003).

    Article  Google Scholar 

  24. U. Sen, Vacuum 75, 339 (2004).

    Article  Google Scholar 

  25. M. Aghaie-Khafri and F. Fazlalipour, J. Phys. Chem. Solids 69, 2465 (2008).

    Article  Google Scholar 

  26. X.S. Fan, Z.G. Yang, C. Zhang, Y.D. Zhang, and H.Q. Che, Surf. Coat. Tehnol. 205, 641 (2010).

    Article  Google Scholar 

  27. B. Chicco, W.E. Borbidge, and E. Summerville, Mater. Sci. Eng. A 266, 62 (1999).

    Article  Google Scholar 

  28. G.A. Roberts, J.C. Hamaker, and A.R. Johnson, Tool Steels (Materials Park: ASM, 1961).

    Google Scholar 

  29. M. Stupnišek, B. Koroušić, and B. Dobovišek, Proc. 3rd Int. Congress of IFHT, vol. 7, Shanghai, Nov. 7–11, 1983, pp. 23–28.

  30. B. Koroušić, Rudarsko-Metalurški Zbornik 40, 5 (1989).

    Google Scholar 

  31. F. Neuman and B. Person, Härterei-Technische Mitteilungen 23, 296 (1966).

    Google Scholar 

  32. S. Gunnarson, Härterei-Technische Mitteilungen 22, 293 (1967).

    Google Scholar 

  33. W.G. Cohran and G.M. Cox, Experimental Designs (New York, NY: Wiley, 1957).

    Google Scholar 

  34. B. Matijević (Ph.D. Dissertation, University of Zagreb, Zagreb, Croatia, 1997).

  35. L. Xiujuan, W. Huachang, L. Dongwei, and W. Yanxi, Surf. Coat. Tehnol. 201, 2414 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank to the Ministry of Science, Education and Sports of the Republic of Croatia for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Božidar Matijević.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matijević, B. A Model of Vanadium Carbide Growth on Steel Surfaces Obtained by Thermo Reactive Deposition. JOM 65, 1395–1402 (2013). https://doi.org/10.1007/s11837-013-0763-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0763-4

Keywords

Navigation