Skip to main content
Log in

Shock Waves Impacting Composite Material Plates: The Mutual Interaction

  • Published:
JOM Aims and scope Submit manuscript

Abstract

High-performance, fiber-reinforced polymer composites have been extensively used in structural applications in the last 30 years because of their light weight combined with high specific stiffness and strength at a rather low cost. The automotive industry has adopted these materials in new designs of lightweight vehicles. The mechanical response and characterization of such materials under transient dynamic loading caused with shock impact induced by blast is not well understood. Air blast is associated with a fast traveling shock front with high pressure across followed by a decrease in pressure behind due to expansion waves. The time scales associated with the shock front are typically 103 faster than those involved in the expansion waves. Impingement of blast waves on structures can cause a reflection of the wave off the surface of the structure followed by a substantial transient aerodynamic load, which can cause significant deformation and damage of the structure. These can alter the overpressure, which is built behind the reflected shock. In addition, a complex aeroelastic interaction between the blast wave and the structure develops that can induce reverberation within an enclosure, which can cause substantial overpressure through multiple reflections of the wave. Numerical simulations of such interactions are quite challenging. They usually require coupled solvers for the flow and the structure. The present contribution provides a physics-based analysis of the phenomena involved, a critical review of existing computational techniques together with some recent results involving face-on impact of shock waves on thin composite plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Subramaniam, W. Nian, and Y. Andreopoulos, Int. J. Impact Eng. 36, 965 (2009).

    Article  Google Scholar 

  2. Y. Andreopoulos, S. Xanthos, and K. Subramaniam, Shock Waves 16, 455 (2007).

    Article  Google Scholar 

  3. W. Nian, K. Subramaniam, and Y. Andreopoulos, J. Aerosp. Eng. 23, 176 (2010).

    Article  Google Scholar 

  4. V. Kazemi-Kamyab, K.K. Subramaniam, and Y. Andreopoulos, J. Appl. Phys. 109, 013523 (2011).

    Article  Google Scholar 

  5. A.K. Al-Qananwah, J. Koplik, and Y. Andreopoulos, Shock Waves (2012). doi:10.1007/s00193-012-0397-4.

  6. W. Nian, K. Subramaniam, and Y. Andreopoulos, Int. J. Impact Eng. 50 (12), 29 (2012).

    Google Scholar 

  7. A.M. Saad, Compressible Flow (Upper Saddle River, NJ: Prentice Hall, 1984).

    Google Scholar 

  8. B. Hopkinson, British Ordnance Board Minutes, Rept. 13565 (London, U.K.: British Ordnance Office, 1915).

  9. G.I. Taylor, The Scientific Papers of G.I. Taylor (Cambridge, U.K.: Cambridge University Press, 1963).

  10. R. Houlston, J.E. Slate, N. Pegg, and C.G. DesRochers, Compos. Struct. 26, 1 (1987).

    Article  Google Scholar 

  11. A.D. Gupta, F.H. Gregory, R.L. Bitting, and S. Bhattacharya, Compos. Struct. 26, 339 (1987).

    Article  Google Scholar 

  12. F.B.A. Beshara, Compos. Struct. 51, 585 (1994).

    Article  MATH  Google Scholar 

  13. H.S. Turkmen and Z. Mecitoglu, AIAA J. 37, 1639 (1999).

    Article  Google Scholar 

  14. H.S. Turkmen and Z. Mecitoglu, J. Sound Vib. 221, 371 (1999).

    Article  Google Scholar 

  15. Z. Xue and J.W. Hutchinson, Int. J. Mech. Sci. 45, 687 (2003).

    Article  MATH  Google Scholar 

  16. Z. Xue and J.W. Hutchinson, Int. J. Impact Eng. 30, 1283 (2004).

    Article  Google Scholar 

  17. N.A. Fleck and V.S. Deshpande, J. Appl. Mech. Trans. ASME 71, 386 (2004).

    Article  MATH  Google Scholar 

  18. X. Qiu, V.S. Deshpande, and N. Fleck, J. Appl. Mech. Trans. ASME 71, 637 (2004).

    Article  MATH  Google Scholar 

  19. S.A. Takalur, K. Shivakumar, and A. Shukla, Composites B 39, 57 (2008).

    Article  Google Scholar 

  20. M. Gong and Y. Andreopoulos, J. Sound Vib. 313, 171 (2008).

    Article  Google Scholar 

  21. N.K. Gupta and S. Nagesh, Int. J. Impact Eng. 34, 42 (2007).

    Article  Google Scholar 

  22. M. Porfiri and N. Gupta, Major Accomplishments in Composite Materials and Sandwich Structures: An Anthology of ONR Sponsored Research, ed. I.M. Daniel, E.E. Gdoutos, and Y.D.S. Rajapakse (New York: Springer, 2009).

  23. S. Avachat and M. Zhou, Exp. Mech. 52, 83 (2012).

    Article  Google Scholar 

  24. M. Gong and Y. Andreopoulos, J. Comput. Phys. 228, 4400 (2009).

    Article  MATH  Google Scholar 

  25. M. Gong Mutual Interactions between Shock Waves and Structures (Ph.D. dissertation, City University of New York, 2006).

  26. R. Lohner, Eng. Fract. Mech. 50, 819 (1995).

    Article  Google Scholar 

  27. R. Lohner, Comput. Methods Appl. Mech. Eng. 61, 323 (1987).

    Article  Google Scholar 

  28. D. DeZeeuw and K.G. Powell, J. Comput. Phys. 104, 56 (1993).

    Article  Google Scholar 

  29. W.D. Henshaw and D.W. Schwendeman, J. Comput. Phys. 191, 420 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  30. C.W. Hirt, A.A. Amsden, and J.L. Cook, J. Comput. Phys. 135, 203 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Glimm, M.J. Graham, J. Grove, X.L. Li, T.M. Smith, D. Tan, F. Tangerman, and Q. Zhang, Comput. Math. Appl. 35, 1 (1998).

    Article  MATH  Google Scholar 

  32. C.S. Peskin, J. Comput. Phys. 25, 220 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  33. E. Balaras, Comput. Fluids 33, 375 (2004).

    Article  MATH  Google Scholar 

  34. C. Farhat, M. Lesoinne, and P. Le Tallec, Comput. Methods Appl. Mech. Eng. 157, 95 (1998).

    Article  MATH  Google Scholar 

  35. L. Guibas and J. Stolfi, ACM Trans. Graph. 4, 74 (1985).

    Article  MATH  Google Scholar 

  36. K.-J. Bathe, Finite Element Procedures (Englewood Cliffs, NJ: Prentice-Hall, 1996).

    Google Scholar 

  37. O.C. Zienkiewicz and R. Taylor, The Finite Element Method (Oxford, U.K.: Butterworth-Heinemann, 2000).

    MATH  Google Scholar 

  38. D. Jahnke and Y. Andreopoulos (Paper presented at the Proceedings of the ASME 2011 International Mechanical Engineering Congress & Exposition, IMECE2011, Denver, CO, 11–17 November 2011).

  39. J. LeBlanc and A. Sukla, Compos. Struct. 92, 2421 (2010).

    Article  Google Scholar 

  40. D. Jahnke and Y. Andreopoulos (Paper presented at Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition, IMECE2012 Houston, TX, 9–15 November 2012).

Download references

Acknowledgements

The author would like to acknowledge the financial support provided by NSF, ARO, and ARDEC at Picatinny Arsenal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiannis Andreopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreopoulos, Y. Shock Waves Impacting Composite Material Plates: The Mutual Interaction. JOM 65, 185–202 (2013). https://doi.org/10.1007/s11837-012-0506-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0506-y

Keywords

Navigation