Skip to main content
Log in

The Impact of the Turing Number on Quantitative ASAXS Measurements of Ternary Alloys

  • Published:
JOM Aims and scope Submit manuscript

Abstract

During the last ten years, anomalous small-angle x-ray scattering (ASAXS) became a precise quantitative method resolving scattering contributions two or three orders of magnitude smaller compared with the overall small-angle scattering, which are related to the so-called pure-resonant scattering contribution. The technique gives access to the analysis of weak concentration fluctuations in systems undergoing spinodal decomposition, which cannot be resolved by transmission electron microscopy (TEM) images because these systems are to a large degree homogeneous. In addition to the structural information, precise quantitative information about the different chemical concentrations localized in the nanosized structures of ternary alloys are obtained from these scattering contributions. The application of the Gauss elimination algorithm to the vector equation established by ASAXS measurements at three x-ray energies is demonstrated for two ternary alloys, one in the state of spinodal decomposition. The example deals with the quantitative analysis of the resonant invariant (RI-analysis). From the integrals of the pure-resonant scattering contribution, the chemical concentrations in the nanoscaled phases are determined. Moreover the Turing numbers of the vector equation stated by the ASAXS measurement are calculated giving a decisive quantitative measure thereby indicating whether the quantitative parameters obtained from the matrix inversion are significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Guinier and G. Fournet, Small-Angle Scattering of X-rays (New York: Wiley, 1955).

    Google Scholar 

  2. O. Glatter and O. Kratky, Small-Angle X-ray Scattering (London, U.K.: Academic Press, 1982).

    Google Scholar 

  3. O. Kratky, Nova Acta Leopold. 256, 55 (1983).

    Google Scholar 

  4. G. Goerigk and N. Mattern, Acta Mater. 57, 3652 (2009).

    Article  Google Scholar 

  5. H.B. Stuhrmann, Adv. Polym. Sci. 67, 123 (1985).

    Article  Google Scholar 

  6. G. Goerigk and N. Mattern, J. Phys. Conf. Ser. 247, 012022 (2010).

    Article  Google Scholar 

  7. G. Goerigk, R. Schweins, K. Huber, and M. Ballauff, Europhys. Lett. 66, 331 (2004).

    Article  Google Scholar 

  8. G. Goerigk, K. Huber, and R. Schweins, J. Chem. Phys. 127, 154908 (2007).

    Article  Google Scholar 

  9. G. Goerigk and D.L. Williamson, J. Appl. Phys. 99, 084309 (2006).

    Article  Google Scholar 

  10. J. Westlake, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations (New York: Wiley, 1968).

    MATH  Google Scholar 

  11. J.P. Simon, O. Lyon, and D. de Fontaine, J. Appl. Crystallogr. 18, 230 (1985).

    Article  Google Scholar 

  12. A. Gabriel, Rev. Sci. Instrum. 48, 1303 (1977).

    Article  Google Scholar 

  13. G. Goerigk (HASYLAB Annual Report, 2006), p. 77.

  14. H.-G. Haubold, K. Gruenhagen, M. Wagener, H. Jungbluth, H. Heer, A. Pfeil, H. Rongen, G. Brandenburg, R. Moeller, J. Matzerath, P. Hiller, and H. Halling, Rev. Sci. Instrum. 60, 1943 (1989).

    Article  Google Scholar 

  15. N. Mattern, M. Zinkevich, W. Löser, G. Behr, and J.J. Acker, Phase Equilib. Differ. 29, 141 (2008).

    Article  Google Scholar 

  16. N. Mattern, U. Kühn, A. Gebert, T. Gemming, M. Zinkevich, H. Wendrock, and L. Schultz, Scr. Mater. 53, 271 (2005).

    Article  Google Scholar 

  17. N. Mattern, T. Gemming, G. Goerigk, and J. Eckert, Scr. Mater. 57, 29 (2007).

    Article  Google Scholar 

  18. N. Mattern, G. Goerigk, U. Vainio, M.K. Miller, T. Gemming, and J. Eckert, Acta Mater. 57, 903 (2009).

    Article  Google Scholar 

  19. A. Shariq and N. Mattern, Ultramicroscopy 111, 1370 (2011).

    Article  Google Scholar 

  20. G. Goerigk, K. Huber, N. Mattern, and D.L. Williamson, Eur. Phys. J. 208, 259 (2012).

    Google Scholar 

Download references

Acknowledgements

The co-operation with the group of N. Mattern, Leibniz-Institute IFW Dresden, Institute for Complex Materials, Dresden, Germany is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Johannes Goerigk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goerigk, G.J. The Impact of the Turing Number on Quantitative ASAXS Measurements of Ternary Alloys. JOM 65, 44–53 (2013). https://doi.org/10.1007/s11837-012-0451-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0451-9

Keywords

Navigation