Skip to main content
Log in

Metallic glasses: Gaining plasticity for microsystems

  • Bulk Metallic Glasses / Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Since the 1960s, metallic glasses (MGs) have attracted tremendous re-search interest in materials science and engineering, given their unique cornbination of mechanical properties. How-ever, the industrial applications of MGs have been hindered due to their lack of ductility in bulk form at room temperature. In contrast, it was observed that MGs could exhibit excellent plasticity at the small size scale. In this article, we summarize the related experimental findings having been reported so far together with the possible origins of such a size effect in MGs. The enhanced plasticity of MGs in small volumes, together with their high mechanical strengths and remarkable thermoplastic formability, strongly implies that MGs are the promising materials for fabricating the next generation of micro- and nano-devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Klement, R.H. Willens, and R. Duwez, Nature, 187 (1960), pp. 869–870.

    Article  CAS  ADS  Google Scholar 

  2. A.L. Greer, Science, 267 (1995), pp. 1947–1953.

    Article  CAS  PubMed  ADS  Google Scholar 

  3. M.F. Ashby and A.L. Greer, Scripta Mater., 54 (2006), pp. 321–326.

    Article  CAS  Google Scholar 

  4. W.H. Peter et al., Intermetallics, 10 (2002), pp. 1157–1162.

    Article  CAS  Google Scholar 

  5. A. Inoue, Acta Mater., 48 (2000), pp. 279–306.

    Article  CAS  Google Scholar 

  6. F. Spaepen, Acta Metall., 23 (1977), pp. 407–415.

    Google Scholar 

  7. A.S. Argon, Acta Metall., 27 (1979), pp. 47–58.

    Article  CAS  Google Scholar 

  8. D.B. Miracle, Nature, 3 (2004), pp. 697–712.

    Article  CAS  Google Scholar 

  9. F. Shlmlzu, S. Ogata, and J. Li, Acta Mater., 54 (2006), pp. 4293–4298.

    Article  Google Scholar 

  10. C.E. Packard and C. Schuh, Acta Mater., 55 (2007), pp. 5348–5358.

    Article  CAS  Google Scholar 

  11. W.L Johnson and K. Samwer, Phys. Rev. Lett., 95 (2005), 195501.

    Article  CAS  PubMed  ADS  Google Scholar 

  12. J.S. Harmon et al., Phys. Rev. Lett., 99 (2007), 135502.

    Article  PubMed  ADS  Google Scholar 

  13. C.A. Schuh, T.C. Hufnagel, and U. Ramamurty, Acta Mater., 55 (2007), pp. 4067–4109.

    Article  CAS  Google Scholar 

  14. C.A. Schuh and A.C. Lund, Nature Mater., 2 (2003), pp. 449–452.

    Article  CAS  ADS  Google Scholar 

  15. C.A. Schuh, A.C. Lund, and T.G. Nieh, Acta Mater., 52 (2004), pp. 5879–5891.

    Article  CAS  Google Scholar 

  16. D. Pan et al., Proc. Natl. Acad. Sei., 105(39) (2008), pp. 14769–14772.

    Article  CAS  ADS  Google Scholar 

  17. H. Zhang, S. Maiti, and G. Subhash, J. Mech. Phys. Solids, 56(6) (2008), pp. 2171–2187.

    Article  CAS  ADS  Google Scholar 

  18. B. Vang, C.T. Liu, and T.G. Nieh, Appl. Phys. Lett., 88 (2006), 221911.

    Article  ADS  Google Scholar 

  19. J.J. Lewandowski and A.L. Greer, Nature Mater., 5 (2006), pp. 15–18.

    Article  CAS  ADS  Google Scholar 

  20. Y. Zhang and A.L. Greer, Appl. Phys. Lett., 89 (2006), 071907.

    Article  ADS  Google Scholar 

  21. M.Q. Jiang and L.H. Dai, J. Mech. Phys. Solids, 57 (2009), pp. 1267–1292.

    Article  CAS  ADS  Google Scholar 

  22. Y.F. Gao, B. Yang, and T.G. Nieh, Acta Mater., 55 (2007), pp. 2319–2327.

    Article  CAS  Google Scholar 

  23. M.W. Chen, Annu. Rev. Mater. Res., 38 (2008), pp. 445–469.

    Article  CAS  Google Scholar 

  24. A. Furukawa and H. Tanaka, Nature Mater., 8 (2009), pp. 601–609.

    Article  CAS  ADS  Google Scholar 

  25. H.W. Sheng et al., Nature Mater., 6 (2007), pp. 192–197.

    Article  CAS  ADS  Google Scholar 

  26. Y.Q. Cheng, A.J. Cao, and E. Ma, Acta Mater., 57 (2009), pp. 3253–3267.

    Article  CAS  Google Scholar 

  27. A.L. Greer and E. Ma, MRS Bulletin, 32 (2007), pp. 611–615.

    CAS  Google Scholar 

  28. A.L. Greer, Materials Today, 12(1–2) (2009), pp. 14–22.

    Article  CAS  Google Scholar 

  29. C.A. Volkert, A. Donohue, and F. Spaepen, J.Appl. Phys., 103 (2008), 083539.

    Article  ADS  Google Scholar 

  30. Z.W. Shan et al., Physical Review B, 77 (2008), 155419.

    Article  ADS  Google Scholar 

  31. B.E. Schuster et al., Acta Mater., 56 (2008), pp. 5091–5100.

    Article  CAS  ADS  Google Scholar 

  32. C.J. Lee, J.C. Huang, and T.G. Nieh, Appl. Phys. Leff., 91 (2007), 161913.

    Article  ADS  Google Scholar 

  33. Y.H. Lai et al., Scripta Mater., 58 (2008), pp. 890–893.

    Article  CAS  Google Scholar 

  34. Y. Vang et al., Acta Mater., 57 (2009), pp. 1613–1623.

    Article  Google Scholar 

  35. J.C. Ye et al., Acta Mater., 57 (2009), pp. 6037–6046.

    Article  CAS  Google Scholar 

  36. J.C. Ve et al., Intermetallics (2009), doi:10.1016/j.intermet.2009.1008.1011.

  37. H. Guo et al., Nature Mater., 6 (2007), pp. 735–739.

    Article  CAS  ADS  Google Scholar 

  38. U. Ramamurty et al., Acta Mater., 53 (2005), pp. 705–717.

    Article  CAS  Google Scholar 

  39. J. Schroers, Q. Pham, and A. Desai, J. Microelectro-mechanical Sys., 16(2) (2007), pp. 240–247.

    Article  CAS  Google Scholar 

  40. G. Kumar, H.X. Tang, and J. Schroers, Nature, 457 (2009), pp. 868–872.

    Article  CAS  PubMed  ADS  Google Scholar 

  41. J.S Jang et al., Adv. Eng. Mater., 10(11) (2008), pp. 1048–1052.

    Article  CAS  Google Scholar 

  42. M.D. Uchic et al., Science, 305 (2004), pp. 986–989.

    Article  CAS  PubMed  ADS  Google Scholar 

  43. R. Dou and B. Derby, Scripta Mater., 61 (2009), pp. 524–527.

    Article  CAS  Google Scholar 

  44. H. Bei et al., Appl. Phys. Lett., 91 (2007), 111915.

    Article  ADS  Google Scholar 

  45. R. Maab et al., Appl. Phys. Lett., 91 (2007), 131909.

    Article  ADS  Google Scholar 

  46. R. Maab et al., Appl. Phys. Lett., 89 (2006), 151905.

    Article  ADS  Google Scholar 

  47. D. Kiener et al., Mater. Sei. Eng. A, 459 (2007), pp. 262–272.

    Article  Google Scholar 

  48. A. Needleman, Comput MethodAppl. Mech. Eng, 67(1988), pp. 69–85.

    Article  MATH  Google Scholar 

  49. J.R. Rice, Theoretical and Applied Mechanics, ed. W.T. Koiter (Amsterdam: North-Holland, 1977), pp. 207–220.

    Google Scholar 

  50. S. Xie and E.P. George, Intermetallics, 16 (2008), pp. 485–489.

    Article  CAS  Google Scholar 

  51. Y.F. Gao and A.F. Bower, Modell. Simul. Mater. Sei. Eng, 12 (2004), pp. 453–63.

    Article  ADS  Google Scholar 

  52. F.H. Dalla Torre et al., Acta Mater., 56 (2008), pp. 4635–4646.

    Article  Google Scholar 

  53. A. Dubach, F.H. Dalla Torre, and J.R. Loffler, Acta Mater., 57 (2009), pp. 881–892.

    Article  CAS  Google Scholar 

  54. F.F. Wu, Z.F. Zhang, and S.X. Mao, Acta Mater., 57 (2009), pp. 257–266.

    Article  CAS  Google Scholar 

  55. Y. Shi et al., Phys. Rev. Lett., 98 (2007), 185505.

    Article  PubMed  ADS  Google Scholar 

  56. Y.Q. Cheng et al., Acta Mater., 56 (2008), pp. 5263–5275.

    Article  CAS  Google Scholar 

  57. F. Delogu, Phys. Rev. B, 79 (2009), 184109.

    Article  ADS  Google Scholar 

  58. M.Q. Jiang, W.H. Wang, and L.H. Dai, Scripta Mater., 60 (2009), pp. 1004–1007.

    Article  CAS  Google Scholar 

  59. K.S. Nakayama et al., Adv. Mater., 21 (2009), pp. 1–4.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Ye, J., Lu, J. et al. Metallic glasses: Gaining plasticity for microsystems. JOM 62, 93–98 (2010). https://doi.org/10.1007/s11837-010-0039-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-010-0039-1

Keywords

Navigation