Skip to main content

Advertisement

Log in

Application of Soft Computing in the Field of Internal Combustion Engines: A Review

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

It is well known that fossil fuels are depleting day by day, and with the increase in the number of vehicles the pollution has reached at an alarming stage. The need of the hour is to find an alternate fuel as well as to demote the exhaust emission and enhance the performance parameters of the internal combustion (I.C.) engine. Researches on I.C. engines are being conducted in order to come to a feasible solution. Since performing experiments on an I.C. engine is both time consuming and costly therefore many soft computing techniques are being adopted in this field. The term soft computing refers to find the solution of an inexact problem. Different soft computing techniques being used in this field are Artificial Neural Network, Fuzzy Based Approach, Adaptive Neuro Fuzzy Inference System, Gene Expression Programming, Genetic Algorithm and Particle Swarm Optimization. The motive of this work is to review the researches being carried out in the field of I.C. engine on different types of engines with various alternative fuels using these soft computing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Çay Y, Korkmaz I, Çiçek A, Kara F (2013) Prediction of engine performance and exhaust emissions for gasoline and methanol using artificial neural network. Energy 50:177–186. doi:10.1016/j.energy.2012.10.052

    Article  Google Scholar 

  2. Sharon H, Jayaprakash R, Karthigai Selvan M et al (2012) Biodiesel production and prediction of engine performance using SIMULINK model of trained neural network. Fuel 99:197–203. doi:10.1016/j.fuel.2012.04.019

    Article  Google Scholar 

  3. Ilangkumaran M, Sakthivel G, Nagarajan G (2015) Artificial neural network approach to predict the engine performance of fish oil biodiesel with diethyl ether using back propagation algorithm. Int J Ambient Energy. doi:10.1080/01430750.2014.984082

    Google Scholar 

  4. Liaquat AM, Kalam MA, Masjuki HH, Jayed MH (2010) Potential emissions reduction in road transport sector using biofuel in developing countries. Atmos Environ 44:3869–3877. doi:10.1016/j.atmosenv.2010.07.003

    Article  Google Scholar 

  5. Shrivastava N (2016) Experimental investigation of performance, emission, and noise parameters of water—emulsified Karanja biodiesel†¯: a prospective Indian fuel. J Braz Soc Mech Sci Eng doi:10.1007/s40430-016-0581-z

    Google Scholar 

  6. Shrivastava N, Varma SN, Pandey M (2013) Experimental investigation of diesel engine using EGR and fuelled with Karanja oil methyl ester. Int J Sustain Eng 6:307–315. doi:10.1080/19397038.2012.749310

    Article  Google Scholar 

  7. Arcaklio E (2005) A diesel engine’ s performance and exhaust emissions. Appl Energy. 80:11–22. doi:10.1016/j.apenergy.2004.03.004

    Article  Google Scholar 

  8. Yusaf TF, Buttsworth DR, Saleh KH, Yousif BF (2010) CNG-diesel engine performance and exhaust emission analysis with the aid of artificial neural network. Appl Energy 87:1661–1669. doi:10.1016/j.apenergy.2009.10.009

    Article  Google Scholar 

  9. Sayin C, Ertunc HM, Hosoz M et al (2007) Performance and exhaust emissions of a gasoline engine using artificial neural network. Appl Therm Eng 27:46–54. doi:10.1016/j.applthermaleng.2006.05.016

    Article  Google Scholar 

  10. Kesgin U (2004) Genetic algorithm and artificial neural network for engine optimisation of efficiency and NOx emission. Fuel 83:885–895. doi:10.1016/j.fuel.2003.10.025

    Article  Google Scholar 

  11. Cay Y (2013) Prediction of a gasoline engine performance with artificial neural network. Fuel 111:324–331. doi:10.1016/j.fuel.2012.12.040

    Article  Google Scholar 

  12. Kara Togun N, Baysec S (2010) Prediction of torque and specific fuel consumption of a gasoline engine by using artificial neural networks. Appl Energy 87:349–355. doi:10.1016/j.apenergy.2009.08.016

    Article  Google Scholar 

  13. Go M, Sekmen Y, Salman MS (2005) APPLIED Artificial neural-network based modeling of variable valve-timing in a spark-ignition engine. Appl Energy 81:187–197. doi:10.1016/j.apenergy.2004.07.008

    Article  Google Scholar 

  14. Chen J, Bond Randall R (2015) Improved automated diagnosis of misfire in internal combustion engines based on simulation models. Mech Syst Signal Process 64–65:58–83. doi:10.1016/j.ymssp.2015.02.027

    Article  Google Scholar 

  15. Yu HS, Arcakliog E (2007) Comparative study of mathematical and experimental analysis of spark ignition engine performance used ethanol – gasoline blend fuel. Appl Therm Eng 27:358–368. doi:10.1016/j.applthermaleng.2006.07.027

    Article  Google Scholar 

  16. Kapusuz M, Ozcan H, Ahmad J (2015) Research of performance on a spark ignition engine fueled by alcohol e gasoline blends using arti fi cial neural networks. Appl Therm Eng 91:525–534. doi:10.1016/j.applthermaleng.2015.08.058

    Article  Google Scholar 

  17. Çay Y, Çiçek A, Kara F, Saǧiroǧlu S (2012) Prediction of engine performance for an alternative fuel using artificial neural network. Appl Therm Eng 37:217–225. doi:10.1016/j.applthermaleng.2011.11.019

    Article  Google Scholar 

  18. Taylor P, Danaiah P, Kumar PR, Rao YVH (2013) Performance and emission prediction of a tert butyl alcohol gasoline blended spark-ignition engine using artificial neural networks. Int J Ambient Energy 37–41. doi:10.1080/01430750.2013.820147

  19. Deh Kiani MK, Ghobadian B, Tavakoli T et al (2010) Application of artificial neural networks for the prediction of performance and exhaust emissions in SI engine using ethanol–gasoline blends. Energy 35:65–69. doi:10.1016/j.energy.2009.08.034

    Article  Google Scholar 

  20. Dehghani M, Ghobadian B, Najafi G (2015) Performance and exhaust emissions of a SI two-stroke engine with biolubricants using artificial neural network. Energy Proced 75:3–9. doi:10.1016/j.egypro.2015.07.127

    Article  Google Scholar 

  21. Najafi G, Ghobadian B, Tavakoli T et al (2009) Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network. Appl Energy 86:630–639. doi:10.1016/j.apenergy.2008.09.017

    Article  Google Scholar 

  22. Veli C¸ elik EA (2005) Performance maps of a diesel engine. Appl Energy 81:247–259. doi:10.1016/j.apenergy.2004.08.003

    Article  Google Scholar 

  23. Bietresato M, Calcante A, Mazzetto F (2015) A neural network approach for indirectly estimating farm tractors engine performances. Fuel 143:144–154. doi:10.1016/j.fuel.2014.11.019

    Article  Google Scholar 

  24. Rahimi-Ajdadi F, Abbaspour-Gilandeh Y (2011) Artificial neural network and stepwise multiple range regression methods for prediction of tractor fuel consumption. Meas J Int Meas Confed 44:2104–2111. doi:10.1016/j.measurement.2011.08.006

    Article  Google Scholar 

  25. Roy S, Banerjee R, Bose PK (2014) Performance and exhaust emissions prediction of a CRDI assisted single cylinder diesel engine coupled with EGR using artificial neural network. Appl Energy 119:330–340. doi:10.1016/j.apenergy.2014.01.044

    Article  Google Scholar 

  26. Taghavifar H, Taghavifar H, Mardani A, Mohebbi A (2014) Modeling the impact of in-cylinder combustion parameters of di engines on soot and NOx emissions at rated EGR levels using ANN approach. Energy Convers Manag 87:1–9. doi:10.1016/j.enconman.2014.07.005

    Article  Google Scholar 

  27. Krijnsen BHC, Van Kooten WEJ, Calis HPA et al (1999) Prediction of NOx emissions from a transiently operating diesel engine using an artificial neural network. Chem Eng Technol 22:601–607

    Article  Google Scholar 

  28. Mohammadhassani J, Dadvand A, Khalilarya S, Solimanpur M (2015) Prediction and reduction of diesel engine emissions using a combined ANN–ACO method. Appl Soft Comput J 34:139–150. doi:10.1016/j.asoc.2015.04.059

    Article  Google Scholar 

  29. Taghavifar H, Mardani A, Mohebbi A, Taghavifar H (2014) Investigating the effect of combustion properties on the accumulated heat release of di engines at rated EGR levels using the ANN approach. Fuel 137:1–10. doi:10.1016/j.fuel.2014.07.073

    Article  Google Scholar 

  30. Hashemi N, Clark NN (2007) Artificial neural network as a predictive tool for emissions from heavy-duty diesel vehicles in Southern California. Int J Engine Res 8:321–336. doi:10.1243/14680874JER00807

    Article  Google Scholar 

  31. Karonis D, Lois E, Zannikos F, et al (2003) A neural network approach for the correlation of exhaust emissions from a diesel engine with diesel fuel properties. Energy Fuels 1259–1265.

  32. Parlak A (2006) Application of artificial neural network to predict specific fuel consumption and exhaust temperature for a diesel engine. Appl Therm Eng 26:824–828. doi:10.1016/j.applthermaleng.2005.10.006

    Article  Google Scholar 

  33. Yusaf TF, Yousif BF, Elawad MM (2011) Crude palm oil fuel for diesel-engines: experimental and ANN simulation approaches. Energy 36:4871–4878. doi:10.1016/j.energy.2011.05.032

    Article  Google Scholar 

  34. Kannan GR, Balasubramanian KR, Anand R (2013) Artificial neural network approach to study the effect of injection pressure and timing on diesel engine performance fueled with biodiesel. Int J Automot Technol 14:507–519. doi:10.1007/s12239

    Article  Google Scholar 

  35. Arumugam S, Sriram G SSPR (2012) Application of artificial intelligence to predict the performance and exhaust emission of diesel engine using rapeseed oil methyl ester. Int Conf Model Optim Comput 38:853–860. doi:10.1016/j.proeng.2012.06.107

    Google Scholar 

  36. Canakci M, Erdil A, Arcaklioǧlu E (2006) Performance and exhaust emissions of a biodiesel engine. Appl Energy 83:594–605. doi:10.1016/j.apenergy.2005.05.003

    Article  Google Scholar 

  37. Canakci M, Ozsezen AN, Arcaklioglu E, Erdil A (2009) Prediction of performance and exhaust emissions of a diesel engine fueled with biodiesel produced from waste frying palm oil. Expert Syst Appl 36:9268–9280. doi:10.1016/j.eswa.2008.12.005

    Article  Google Scholar 

  38. Etghani MM, Shojaeefard MH, Khalkhali A, Akbari M (2013) A hybrid method of modified NSGA-II and TOPSIS to optimize performance and emissions of a diesel engine using biodiesel. Appl Therm Eng 59:309–315. doi:10.1016/j.applthermaleng.2013.05.041

    Article  Google Scholar 

  39. Ghobadian B, Rahimi H, Nikbakht AM, et al (2009) Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network. Renew Energy 34:976–982. doi:10.1016/j.renene.2008.08.008

    Article  Google Scholar 

  40. Pai PS, Rao BRS (2011) Artificial Neural Network based prediction of performance and emission characteristics of a variable compression ratio CI engine using WCO as a biodiesel at different injection timings. Appl Energy 88:2344–2354. doi:10.1016/j.apenergy.2010.12.030

    Article  Google Scholar 

  41. Vinay Kumar D, Ravi Kumar P, Kumari MS (2013) Prediction of performance and emissions of a biodiesel fueled lanthanum zirconate coated direct injection diesel engine using artificial neural networks. Proced Eng 64:993–1002. doi:10.1016/j.proeng.2013.09.176

    Article  Google Scholar 

  42. Muralidharan K, Vasudevan D (2014) Applications of artificial neural networks in prediction of performance, emission and combustion characteristics of variable compression ratio engine fuelled with waste cooking oil biodiesel. J Braz Soc Mech Sci Eng 37:915–928. doi:10.1007/s40430-014-0213-4

    Article  Google Scholar 

  43. Taylor P, Sakthivel G, Ilangkumaran M, Nagarajan G (2012) Predicting the engine performance using ethyl ester of fish oil with the aid of artificial neural network. Int J Ambient Energy 37–41. doi:10.1080/01430750.2012.740429

  44. Shanmugam P, Sivakumar V, Murugesan A, Ilangkumaran M (2011) Performance and exhaust emissions of a diesel engine using hybrid fuel with an artificial neural network. Energy Sources, Part A 33:1440–1450. doi:10.1080/15567036.2010.539085

    Article  Google Scholar 

  45. Abhishek Sharma, Pradeepta Kumar Sahoo, R. K. Tripathi L, Meher C (2015) ANN based prediction of performance and emission characteristics of CI engine using Polanga as a biodiesel. Int J Ambient Energy doi:10.1080/01430750.2015.1023466

    Google Scholar 

  46. Kullolli S, Sakthivel G, Ilangkumaran M (2014) A neural network model for the prediction of compression ignition engine performance at different injection timings. Int J Ambient Energy doi:10.1080/01430750.2014.931297

    Google Scholar 

  47. Taghavifar H, Taghavifar H, Mardani A, et al (2014) Appraisal of artificial neural networks to the emission analysis and prediction of CO2, soot, and NOx of n-heptane fueled engine. J Clean Prod doi:10.1016/j.jclepro.2015.03.035

    Google Scholar 

  48. Mohamed H, Kiat H, Wei C, Gan S (2012) Artificial neural networks modelling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends. Appl Energy 92:769–777. doi:10.1016/j.apenergy.2011.08.027

    Article  Google Scholar 

  49. Oğuz H, Sarıtas I, Baydan HE (2010) Prediction of diesel engine performance using biofuels with artificial neural network. Expert Syst Appl 37:6579–6586. doi:10.1016/j.eswa.2010.02.128

    Article  Google Scholar 

  50. Kökkülünk G, Akdoǧan E, Ayhan V (2013) Prediction of emissions and exhaust temperature for direct injection diesel engine with emulsified fuel using ANN. Turk J Electr Eng Comput Sci 21:2141–2152. doi:10.3906/elk-1202-24

    Article  Google Scholar 

  51. Chakraborty A, Roy S, Banerjee R (2016) Journal of Natural Gas Science and Engineering An experimental based ANN approach in mapping performance- emission characteristics of a diesel engine operating in dual-fuel mode with LPG. J Nat Gas Sci Eng 28:15–30. doi:10.1016/j.jngse.2015.11.024

    Article  Google Scholar 

  52. Thomas Renald RC, Somasundaram P (2012) Experimental investigation on attenuation of emission with optimized LPG jet induction in a dual fuel diesel engine and prediction by ANN model. Energy Proced 14:1427–1438

    Article  Google Scholar 

  53. Roy S, Banerjee R, Das AK, Bose PK (2014) Development of an ANN based system identification tool to estimate the performance-emission characteristics of a CRDI assisted CNG dual fuel diesel engine. J Nat Gas Sci Eng 21:147–158. doi:10.1016/j.jngse.2014.08.002

    Article  Google Scholar 

  54. Jahirul MI., Saidur R., Masjuki HH., et al (2009) Application of artificial neural networks (ANN) for prediction the performance of a dual fuel internal combustion engine. Trans Hong Kong Inst Eng 16:14–20. doi:10.1080/1023697X.2009.10668146

    Google Scholar 

  55. Javed S, Satyanarayana Murthy YVV, Baig RU, Prasada Rao D (2015) Development of ANN model for prediction of performance and emission characteristics of hydrogen dual fueled diesel engine with jatropha methyl ester biodiesel blends. J Nat Gas Sci Eng 26:549–557. doi:10.1016/j.jngse.2015.06.041

    Article  Google Scholar 

  56. Manikandan V, Nguyen X, Assanis D (2013) Nonlinear identification of a gasoline HCCI engine using neural networks coupled with principal component analysis. Appl Soft Comput J 13:2375–2389. doi:10.1016/j.asoc.2013.01.006

    Article  Google Scholar 

  57. P.J. Lu, M.C. Zhang, T.C. Hsu JZ (2014) An evaluation of engine faults diagnostics using artificial neural network. J Eng Gas Turbine Power 123:340–346. doi:10.1115/1.1362667

    Article  Google Scholar 

  58. Yuanwang D, Meilin Z, Dong X, Xiaobei C (2002) An analysis for effect of cetane number on exhaust emissions from engine with the neural network. Fuel. 81:1963–1970.

    Article  Google Scholar 

  59. Yap WK, Ho T, Karri V (2012) Exhaust emissions control and engine parameters optimization using artificial neural network virtual sensors for a hydrogen-powered vehicle. Int J Hydrog Energy 37:8704–8715. doi:10.1016/j.ijhydene.2012.02.153

    Article  Google Scholar 

  60. Choi Y, Chen JY (2005) Fast prediction of start-of-combustion in HCCI with combined artificial neural networks and ignition delay model. Proc Combust Inst 30 II:2711–2718. doi:10.1016/j.proci.2004.08.143

    Article  Google Scholar 

  61. Bahri B, Aziz AA, Shahbakhti M, Muhamad Said MF (2013) Understanding and detecting misfire in an HCCI engine fuelled with ethanol. Appl Energy 108:24–33. doi:10.1016/j.apenergy.2013.03.004

    Article  Google Scholar 

  62. Rezaei J, Shahbakhti M, Bahri B, Aziz AA (2015) Performance prediction of HCCI engines with oxygenated fuels using artificial neural networks. Appl Energy 138:460–473. doi:10.1016/j.apenergy.2014.10.088

    Article  Google Scholar 

  63. Kalogirou SA (2003) Artificial intelligence for the modeling and control of combustion processes†¯: a review. Prog Energy Combust Sci doi:10.1016/S0360-1285(03)00058-3

    Google Scholar 

  64. Lee SH, Howlett RJ, Walters SD, et al (2007) An modeling and control of internal combustion engines using intelligent. Cybern Syst 38:5–6:509–533. doi:10.1080/01969720701344293

    Article  Google Scholar 

  65. Kilagiz Y, Baran A, Yildiz Z, Murat C (2005) A fuzzy diagnosis and advice system for optimization of emissions and fuel consumption. Expert Syst Appl 28:305–311. doi:10.1016/j.eswa.2004.10.016

    Article  Google Scholar 

  66. Tasdemir S, Saritas I, Ciniviz M, Allahverdi N (2011) Artificial neural network and fuzzy expert system comparison for prediction of performance and emission parameters on a gasoline engine. Expert Syst Appl 38:13912–13923. doi:10.1016/j.eswa.2011.04.198

    Google Scholar 

  67. Saraswati S, Agarwal PK, Chand S (2011) Neural networks and fuzzy logic-based spark advance control of SI engines. Expert Syst Appl 38:6916–6925. doi:10.1016/j.eswa.2010.12.032

    Article  Google Scholar 

  68. Mozaffari A, Azad NL (2015) An ensemble neuro-fuzzy radial basis network with self-adaptive swarm based supervisor and negative correlation for modeling automotive engine coldstart hydrocarbon emissions†¯: A soft solution to a crucial automotive problem. Appl Soft Comput J 32:449–467. doi:10.1016/j.asoc.2015.04.009

    Article  Google Scholar 

  69. Lee SH, Howlett RJ, Walters SD (2004) Emission reduction for a small gasoline engine using fuzzy control. IFAC Symp Adv Automot Control 200–205. http://rjhowlett.complexnet.co.uk/papers/2004-1.pdf

  70. Sakthivel G, Snehitkumar B, Ilangkumaran M (2014) Application of fuzzy logic in internal combustion engines to predict the engine performance. Int J Ambient Energy 37:1–11. doi:10.1080/01430750.2014.952844

    Google Scholar 

  71. Lughofer E, Macián V, Guardiola C, Peter E (2011) Identifying static and dynamic prediction models for NOx emissions with evolving fuzzy systems. Appl Soft Comput J 11:2487–2500. doi:10.1016/j.asoc.2010.10.004

    Article  Google Scholar 

  72. Bose PK, Deb M, Banerjee R, Majumder A (2013) Multi objective optimization of performance parameters of a single cylinder diesel engine running with hydrogen using a Taguchi-fuzzy based approach. Energy 63:375–386. doi:10.1016/j.energy.2013.10.045

    Article  Google Scholar 

  73. Yang Z, Wang L, Xiong S, Li J (2006) Research on the optimizing control technology based on fuzzy-neural network for hydrogen-fueled engines. Int J Hydrog Energy 31:2370–2377. doi:10.1016/j.ijhydene.2006.02.027

    Article  Google Scholar 

  74. Zhenzhong Y, Jianqin W, Zhuoyi F, Jinding L (2002) An investigation of optimum control of ignition timing and injection system in an in-cylinder injection type hydrogen fueled engine. Int J Hydrog Energy 27:213–217.

    Article  Google Scholar 

  75. Al-hinti I, Samhouri M, Al-ghandoor A, Sakhrieh A (2009) The effect of boost pressure on the performance characteristics of a diesel engine†¯: a neuro-fuzzy approach. Appl Energy 86:113–121. doi:10.1016/j.apenergy.2008.04.015

    Article  Google Scholar 

  76. Rai A, Kumar NS, P. SP, Rao BRS (2012) Fuzzy logic based prediction of performance and emission parameters of a LPG-diesel dual fuel engine. Proced Eng 38:280–292. doi:10.1016/j.proeng.2012.06.036

    Article  Google Scholar 

  77. Mariani F, Grimaldi CN, Battistoni M (2014) Diesel engine NOx emissions control: An advanced method for the O2 evaluation in the intake flow. Appl Energy 113:576–588. doi:10.1016/j.apenergy.2013.07.067

    Article  Google Scholar 

  78. Rai AA, Pai PS, Rao BRS (2015) Prediction models for performance and emissions of a dual fuel CI engine using ANFIS. Sadhana 40:515–535.

    Article  Google Scholar 

  79. Najafi G, Ghobadian B, Moosavian A et al (2016) SVM and ANFIS for prediction of performance and exhaust emissions of a SI engine with gasoline-ethanol blended fuels. Appl Therm Eng 95:186–203. doi:10.1016/j.applthermaleng.2015.11.009

    Article  Google Scholar 

  80. Uzunsoy OIE (2013) Predicting the exhaust emissions of a spark ignition engine using adaptive neuro-fuzzy inference system. Arab J Sci Eng 3485–3493. doi:10.1007/s13369-013-0637-7

  81. Hosoz M, Ertunc HM, Karabektas M, Ergen G (2013) ANFIS modelling of the performance and emissions of a diesel engine using diesel fuel and biodiesel blends. Appl Therm Eng 60:24–32. doi:10.1016/j.applthermaleng.2013.06.040

    Article  Google Scholar 

  82. Gopalakrishnan K, Mudgal A, Hallmark S (2011) Neuro-fuzzy approach to predictive modeling of emissions from biodiesel powered transit buses. Transport 26:344–352. doi:10.3846/16484142.2011.634080

    Article  Google Scholar 

  83. Roy S, Das AK, Bhadouria VS et al (2015) Adaptive-neuro fuzzy inference system (ANFIS) based prediction of performance and emission parameters of a CRDI assisted diesel engine under CNG dual-fuel operation. J Nat Gas Sci Eng 27:274–283. doi:10.1016/j.jngse.2015.08.065

    Article  Google Scholar 

  84. Roy S, Ghosh A, Kumar A, Banerjee R (2015) Development and validation of a GEP model to predict the performance and exhaust emission parameters of a CRDI assisted single cylinder diesel engine coupled with EGR. Appl Energy 140:52–64. doi:10.1016/j.apenergy.2014.11.065

    Article  Google Scholar 

  85. Roy S, Ghosh A, Kumar A, Banerjee R (2014) Journal of Natural Gas Science and Engineering A comparative study of GEP and an ANN strategy to model engine performance and emission characteristics of a CRDI assisted single cylinder diesel engine under CNG dual-fuel operation. J Nat Gas Sci Eng 21:814–828. doi:10.1016/j.jngse.2014.10.024

    Article  Google Scholar 

  86. Costa M, Marco G, Forte C, Cazzoli G (2014) A numerical methodology for the multi-objective optimization of the DI diesel engine combustion. Energy Proced 45:711–720. doi:10.1016/j.egypro.2014.01.076

    Article  Google Scholar 

  87. Taghavifar H, Khalilarya S, Jafarmadar S (2014) Diesel engine spray characteristics prediction with hybridized artificial neural network optimized by genetic algorithm. Energy 71:656–664. doi:10.1016/j.energy.2014.05.006

    Article  Google Scholar 

  88. Park S (2012) Optimization of combustion chamber geometry and engine operating conditions for compression ignition engines fueled with dimethyl ether. Fuel 97:61–71. doi:10.1016/j.fuel.2012.03.004

    Article  Google Scholar 

  89. Zhu Z, Zhang F, Li C et al (2015) Genetic algorithm optimization applied to the fuel supply parameters of diesel engines working at plateau q. Appl Energy. doi:10.1016/j.apenergy.2015.03.126

    Google Scholar 

  90. Alonso JM, Alvarruiz F, Desantes JM, et al (2007) Combining neural networks and genetic algorithms to predict and reduce diesel engine emissions. IEEE Trans Evol Comput 11:46–55.

    Article  Google Scholar 

  91. Zhang Q, Ogren RM, Kong S (2016) A comparative study of biodiesel engine performance optimization using enhanced hybrid PSO – GA and basic GA. Appl Energy 165:676–684. doi:10.1016/j.apenergy.2015.12.044

    Article  Google Scholar 

  92. Roy S, Das AK, Bose PK, Banerjee R (2014) ANN metamodel assisted particle swarm optimization of the performance-emission trade-off characteristics of a single cylinder CRDI engine under CNG dual-fuel operation. J Nat Gas Sci Eng 21:1156–1162. doi:10.1016/j.jngse.2014.11.013

    Article  Google Scholar 

  93. Wong KI, Wong PK, Cheung CS, Vong CM (2013) Modeling and optimization of biodiesel engine performance using advanced machine learning methods. Energy 55:519–528. doi:10.1016/j.energy.2013.03.057

    Article  Google Scholar 

  94. Bertram A (2014) A novel particle swarm and genetic algorithm hybrid method for improved heuristic optimization of diesel engine performance. Grad Theses Diss. doi:10.1177/1468087415611031

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Shrivastava.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrivastava, N., Khan, Z.M. Application of Soft Computing in the Field of Internal Combustion Engines: A Review. Arch Computat Methods Eng 25, 707–726 (2018). https://doi.org/10.1007/s11831-017-9212-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-017-9212-9

Navigation