Skip to main content
Log in

Seasonal and altitude effects on the structure of arthropod communities associated with Tillandsia violacea Baker (Bromeliaceae) in a temperate forest of Mexico

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

The canopy of forests has been considered “the last biotic frontier,” and study of its elements is very important in explaining the global functionality in ecosystems. Epiphytic plants and arthropods are essential elements in canopy habitats, and their relationships have been studied in order to understand the high diversity in tropical forests. Nevertheless, there are few studies on this development in temperate forests. The arthropod community was studied during the rainy and dry seasons at two altitudes, and a total of 240 T. violacea plants of three sizes were collected from Abies religiosa and Quercus spp. host trees. A total of 163,043 arthropods were collected and about 200 morphospecies identified. The highest abundance was obtained during the dry season, while high diversity was found during the rainy season. There was a significant effect of plant size, host trees and collecting season on abundance and diversity, and there were seasonal variations in community composition. The community hosted on A. religiosa epiphytes showed higher abundance and density than that of Quercus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilera N (1962) Algunas notas sobre suelos de coníferas de México. In: Aguilera N (ed) Seminario y Viaje de estudio del Instituto Nacional de Investigaciones Forestales. Publicación Especial, Mexico, pp 132–240

    Google Scholar 

  • Allen WH (1996) Traveling across the treetops. Bioscience 46:796–799

    Article  Google Scholar 

  • Barker MG (1996) Vertical profiles in a Brunei rain forest: I. Microclimate associated with a canopy tree. J Trop For Sci 8:505–519

    Google Scholar 

  • Barker MG, Pinard MA (2001) Forest canopy research: sampling problems, and some solutions. Plant Ecol 153:23–38

    Article  Google Scholar 

  • Basset Y (1993) Arthropod species-diversity and component communities in the rainforest canopy: lessons from the study of an Australian tree. Trop Zool 1:19–30

    Google Scholar 

  • Basset Y (2001) Invertebrates in the canopy of tropical rain forests. How much do we really know? Plant Ecol 153:87–107

    Article  Google Scholar 

  • Begon M, Harper JL, Townsend CR (1990) Ecology. Individuals, populations and communities. Blackwell, Malden

    Google Scholar 

  • Behan-Pelletier V, Paoletti MG, Bisset B, Sitinner BR (1992) Oribatid mites of forest habitats in Northern Venezuela. Trop Zool 1:39–54

    Google Scholar 

  • Benzing DH (1990) Vascular epiphytes. General biology and related biota. Cambridge University Press, New York

    Book  Google Scholar 

  • Beutelspacher CR (1971) La especie Aechmea bracteata (Swartz) Grised, (Bromeliaceae) considerada como un ecosistema. Ph.D. thesis, Facultad de Ciencias, Universidad Nacional Autónoma de México

  • Castaño-Meneses G (2002) Estructura de la comunidad de artrópodos epífitos y su papel en el crecimiento de Tillandsia violacea (Bromeliaceae) en un bosque templado de Hidalgo, México. Ph.D. thesis, Facultad de Ciencias, Universidad Nacional Autónoma de México

  • Castaño-Meneses G, García-Franco JG, Palacios-Vargas JG (2003) Spatial distribution patterns of Tillandsia violacea (Bromeliaceae) and support trees in an altitudinal gradient from a temperate fores in Central Mexico. Selbyana 24:71–77

    Google Scholar 

  • Cruz-Angón A, Baena ML, Greenberg R (2009) The contribution of epiphytes to the abundance and species richness of canopy insects in a Mexican coffee plantation. J Trop Ecol 25:453–463

    Article  Google Scholar 

  • Davies N, Spencer D (1997) Munroe revisited: a survey of West Indian butterfly faunas and their species-area relationship. Global Ecol Biogeogr Lett 7:285–294

    Google Scholar 

  • Dejean A, Olmsted I, Snelling RR (1995) Tree-epiphyte-ant relationships in the low inundated forest of Sian Ka’an Reserve, Quintana Roo, Mexico. Biotropica 27:57–70

    Article  Google Scholar 

  • Erwin TL (1982) Tropical forests: their richness in Coleoptera and other arthropod species. Coleop Bull 36:74–75

    Google Scholar 

  • Fitzjarrald DR, Moore KE (1995) Physical mechanism of heat and mass exchange between forest and the atmosphere. In: Lowman MD, Nadkarni NM (eds) Forest canopies. Academic Press, San Diego, pp 45–72

    Google Scholar 

  • Frank JH (1983) Bromeliad phytotelmata and ther biota, especially mosquitoes. In: Frank JH, Lounibos LP (eds) Phytotelmat: terrestial plants as hosts for aquatic insect communities. Plexus Publishing Incorporation, Medford, pp 1–27

    Google Scholar 

  • Gardner CS (1986) Inferences about pollination in Tillandsia (Bromeliaceae). Selbyana 9:76–87

    Google Scholar 

  • Gómez LD (1976) La biota bromelícola excepto anfibios y reptiles. In: Gómez LD (ed) Biología de las bromeliáceas. Museo Nacional de Costa Rica, Costa Rica, pp 45–62

    Google Scholar 

  • Goombridge B (1992) Global biodiversity: status of the Earth’s living resources. World Conservation Monitoring Centre. Chapman and Hall, London

  • Greeney HF (2001) The insects of plant-held waters: a review and bibliography. J Trop Ecol 17:241–260

    Article  Google Scholar 

  • Huxley C (1980) Symbiosis between ants and epiphytes. Biol Rev 55:321–340

    Article  Google Scholar 

  • Kitching RL (2001) Food webs in phytotelmata: “bottom-up” and “top-down” explanations for community structure. Ann Rev Entomol 46:729–760

    Article  CAS  Google Scholar 

  • Lawton JH (1986) Surface availability and community structure: the effect of architecture and fractal dimension of plants. In: Juniper BE, Southwood TRE (eds) Insects and the plant surface. Edward Arnold, London, pp 317–331

    Google Scholar 

  • Lowman M, Wittman PK (1996) Forest canopies: methods, hypotheses, and future directions. Annu Rev Ecol Syst 27:55–81

    Article  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Pricenton University Press, Princenton

    Google Scholar 

  • Melo C, López J (1994) Parque Nacional El Chico, marco geográfico-natural y propuesta de zonificación para su manejo operativo. Bol Inst Geogr UNAM 28:65–128

    Google Scholar 

  • Merritt RW, Cummins KW, Burton TM (1984) The role of aquatic insects in the processing and cycling of nutrients. In: Reesh VH, Rosenberg DM (eds) The ecology of aquatic insects. Preaeger, Santa Barbara, pp 134–163

    Google Scholar 

  • Murillo RM, Palacios-Vargas JG, Labougle JM, Hentschel EM, Llorente JE, Luna I, Rojas P, Zamudio S (1983) Variación estacional de la entomofauna asociada a Tillandsia spp. en una zona de transición biótica. Southwest Entomol 8:292–302

    Google Scholar 

  • Nadkarni N (1994) Diversity of species and interactions in the upper tree canopy of forest ecosystems. Am Zool 34:70–78

    Article  Google Scholar 

  • Nadkarni N, Matelson TJ (1989) Bird use of epiphyte resources in neotropical trees. Condor 91:891–907

    Article  Google Scholar 

  • Nadkarni N, Matelson TJ (1991) Fine litter dinamics within the tree canopy of a tropical cloud forest. Ecology 72:2071–2082

    Article  Google Scholar 

  • Nieder J, Prosperi J, Michaloud G (2001) Epiphytes and their contribution to canopy diversity. Plant Ecol 153:51–63

    Article  Google Scholar 

  • Odegaard F (2000a) How many species of arthropods? Erwin’s estimate revised. Biol J Linn Soc 71:583–597

    Article  Google Scholar 

  • Odegaard F (2000b) The relative importance of trees versus lianas as hosts for phytophagous beetles (Coleoptera) in tropical forests. J Biogeogr 27:283–296

    Article  Google Scholar 

  • Palacios-Vargas JG (1981) Collembola asociados a Tillandsia (Bromeliacea) en el Derrame Lávico del Chichinautzin, Morelos, México. Southwest Entomol 6:87–98

    Google Scholar 

  • Palacios-Vargas JG (1982) Microartrópodos asociados a bromeliáceas. In: Salinas PJ (ed) Zoología Neotropical. Actas del VIII Congreso Latinoamericano de Zoología I, pp 535–545

  • Paoletti MG (1989) Life strategies of isopods and “soil invertebrates” in Venezuela. Monitore zool ital (NS). Monografia 4:435–453

    Google Scholar 

  • Paoletti MG, Taylor RA, Stinner BR, Stinner DH, Benzing DH (1991) Diversity of soil fauna in the canopy and forest floor of a Venezuelan cloud forest. J Trop Ecol 7:373–383

    Article  Google Scholar 

  • Picado C (1913) Les broméliacées épiphytes considérées comme milieu biologique. Bull Sci Fr Belg 47:16–360

    Google Scholar 

  • Preston FW (1962) The canonical distribution of commonness and rarity. Ecology 43:185–215

    Article  Google Scholar 

  • Richardson BA (1999) The bromeliad microcosm and the assessment of faunal diversity in a neotropical forest. Biotropica 31:321–336

    Article  Google Scholar 

  • Richardson BA, Rogers C, Richardson MJ (2000a) Nutrients, diversity, and community structure of two phytotelm systems in a lower montane forest, Puerto Rico. Ecol Entomol 25:348–356

    Article  Google Scholar 

  • Richardson BA, Richardson MJ, Scatena FN, McDowell WH (2000b) Effects of nutrient availability and other elevational changes on bromeliad populations and their invertebrate communities in a humid tropical forest in Puerto Rico. J Trop Ecol 16:167–188

    Article  Google Scholar 

  • Ricklefs RE, Lovette IJ (1999) The roles of island area per se and habitat divesity in the species-area relationships of four Lesser Antillean faunal groups. J Anim Ecol 68:1142–1160

    Article  Google Scholar 

  • Robinson DC (1976) Herpetofauna bromelícola costarricense y renacuajos de Hyla picadoi Dunn. In: Gómez LD (ed) Biología de las bromeliáceas. Museo Nacional de Costa Rica, San José, pp 31–41

    Google Scholar 

  • Rzedowski J (1988) Vegetación de México. Limusa, Mexico

    Google Scholar 

  • Sazima M, Sazima I (1999) The perching bird Coereba flaveola as a co-pollinator of bromeliad flowers in southeastern Brazil. Can J Zool 77:47–51

    Article  Google Scholar 

  • Schmidt G, Zotz G (2000) Herbivory in the epiphyte, Vriesea sanguinolenta Cong. & Marchal (Bromeliaceae). J Trop Ecol 16:829–839

    Article  Google Scholar 

  • Sillett TS (1994) Foraging ecology of epiphyte-searching insectivorous birds in Costa Rica. Condor 96:863–877

    Article  Google Scholar 

  • StatSoft Inc (1995) Statistical user guide. Complete Statistical System Statsoft, Oklahoma

    Google Scholar 

  • Stuntz S (2001) The influence of epiphytes on arthropods in the tropical forest canopy. Ph.D. thesis. University of Würzburg

  • Stuntz S, Simon U, Zotz G (2002a) Rainforest air-conditioning: the moderating influence of epiphytes on the microclimate in tropical tree crowns. Int J Biometereol 46:53–59

    Article  Google Scholar 

  • Stuntz S, Ziegler Ch, Simon U, Zotz G (2002b) Diversity and structure of the arthropod fauna within three canopy epiphyte species in central Panama. J Trop Ecol 18:61–176

    Article  Google Scholar 

  • Usman S, Singh SP, Rawat YS, Bargali SS (2000) Fine root decomposition and nitrogen mineralisation patterns in Quercus leucothichophora and Pinus roxburghii forests in central Himalaya. For Ecol Manag 131:191–199

    Article  Google Scholar 

  • Vargas-Márquez F (1984) Parques Nacionales de México y reservas equivalentes. Pasado, presente y Futuro, Instituto de Investigaciones Económicas, Universidad Nacional Autónoma de México, México, DF

  • Yanoviak SP, Nadkarni NM, Solano R (2006) Arthropod assamblages in epiphyte mats of Costa Rica could foresst. Biotropica 36:202–210

    Google Scholar 

  • Yanoviak SP, Berghoff M, Linsenmair KE, Zotz G (2011) Effects of an epiphytic orchid on arboreal ant community structure in Panama. Biotropica 43:731–737

    Article  Google Scholar 

  • Zar JH (1984) Biostatistical analysis. Prentice-Hall, Englewood Cliff

    Google Scholar 

  • Zotz G, Hietz P, Schmidt G (2001) Small plants, large plants: the importance of plant size for the physiological ecology of vascular epiphytes. J Exp Bot 52:2051–2056

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

J. Monterrubio, D. Estrada and M. Vences assisted with the field work. Drs. V. Rico-Gray, Z. Cano, J. G. García-Franco, H. Brailowsky, A. García-Alderete and S. Zaragoza provided valuable suggestions on the first draft. Dr. José G. Palacios-Vargas gave invaluable comments and help in developing the project. Dr. Hugo Mejía Madrid (FCiencias-UNAM) reviewed the spelling in the manuscript and made valuable grammatical and style corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Castaño-Meneses.

Additional information

Handling Editor: Heikki Hokkanen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castaño-Meneses, G. Seasonal and altitude effects on the structure of arthropod communities associated with Tillandsia violacea Baker (Bromeliaceae) in a temperate forest of Mexico. Arthropod-Plant Interactions 10, 403–417 (2016). https://doi.org/10.1007/s11829-016-9451-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-016-9451-y

Keywords

Navigation